An empirical verification of a-priori learning models on mailing archives in the context of online learning activities of participants in free\libre open source software (FLOSS) communities

An empirical verification of a-priori learning models on mailing archives in the context of... Free\Libre Open Source Software (FLOSS) environments are increasingly dubbed as learning environments where practical software engineering skills can be acquired. Numerous studies have extensively investigated how knowledge is acquired in these environments through a collaborative learning model that define a learning process. Such a learning process, identified either as a result of surveys or by means of questionnaires, can be depicted through a series of graphical representations indicating the steps FLOSS community members go through as they acquire and exchange skills. These representations are referred to as a-priori learning models. They are Petri net-like workflow nets (WF-net) that provide a visual representation of the learning process as it is expected to occur. These models are representations of a learning framework or paradigm in FLOSS communities. As such, the credibility of any models is estimated through a process of model verification and validation. Therefore in this paper, we analyze these models in comparison with the real behavior captured in FLOSS repositories by means of conformance verification in process mining. The purpose of our study is twofold. Firstly, the results of our analysis provide insights on the possible discrepancies that are observed between the initial theoretical representations of learning processes and the real behavior captured in FLOSS event logs, constructed from mailing archives. Secondly, this comparison helps foster the understanding on how learning actually takes place in FLOSS environments based on empirical evidence directly from the data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Education and Information Technologies Springer Journals

An empirical verification of a-priori learning models on mailing archives in the context of online learning activities of participants in free\libre open source software (FLOSS) communities

Loading next page...
 
/lp/springer_journal/an-empirical-verification-of-a-priori-learning-models-on-mailing-u9T0jwgxKI
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Computers and Education; Educational Technology; User Interfaces and Human Computer Interaction; Education, general; Information Systems Applications (incl.Internet); Computer Appl. in Social and Behavioral Sciences
ISSN
1360-2357
eISSN
1573-7608
D.O.I.
10.1007/s10639-017-9573-6
Publisher site
See Article on Publisher Site

Abstract

Free\Libre Open Source Software (FLOSS) environments are increasingly dubbed as learning environments where practical software engineering skills can be acquired. Numerous studies have extensively investigated how knowledge is acquired in these environments through a collaborative learning model that define a learning process. Such a learning process, identified either as a result of surveys or by means of questionnaires, can be depicted through a series of graphical representations indicating the steps FLOSS community members go through as they acquire and exchange skills. These representations are referred to as a-priori learning models. They are Petri net-like workflow nets (WF-net) that provide a visual representation of the learning process as it is expected to occur. These models are representations of a learning framework or paradigm in FLOSS communities. As such, the credibility of any models is estimated through a process of model verification and validation. Therefore in this paper, we analyze these models in comparison with the real behavior captured in FLOSS repositories by means of conformance verification in process mining. The purpose of our study is twofold. Firstly, the results of our analysis provide insights on the possible discrepancies that are observed between the initial theoretical representations of learning processes and the real behavior captured in FLOSS event logs, constructed from mailing archives. Secondly, this comparison helps foster the understanding on how learning actually takes place in FLOSS environments based on empirical evidence directly from the data.

Journal

Education and Information TechnologiesSpringer Journals

Published: Feb 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off