An empirical study of on-line models for relational data streams

An empirical study of on-line models for relational data streams To date, Inductive Logic Programming (ILP) systems have largely assumed that all data needed for learning have been provided at the onset of model construction. Increasingly, for application areas like telecommunications, astronomy, text processing, financial markets and biology, machine-generated data are being generated continuously and on a vast scale. We see at least four kinds of problems that this presents for ILP: (1) it may not be possible to store all of the data, even in secondary memory; (2) even if it were possible to store the data, it may be impractical to construct an acceptable model using partitioning techniques that repeatedly perform expensive coverage or subsumption-tests on the data; (3) models constructed at some point may become less effective, or even invalid, as more data become available (exemplified by the “drift” problem when identifying concepts); and (4) the representation of the data instances may need to change as more data become available (a kind of “language drift” problem). In this paper, we investigate the adoption of a stream-based on-line learning approach to relational data. Specifically, we examine the representation of relational data in both an infinite-attribute setting, and in the usual fixed-attribute setting, and develop implementations that use ILP engines in combination with on-line model-constructors. The behaviour of each program is investigated using a set of controlled experiments, and performance in practical settings is demonstrated by constructing complete theories for some of the largest biochemical datasets examined by ILP systems to date, including one with a million examples; to the best of our knowledge, the first time this has been empirically demonstrated with ILP on a real-world data set. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Machine Learning Springer Journals

An empirical study of on-line models for relational data streams

Loading next page...
 
/lp/springer_journal/an-empirical-study-of-on-line-models-for-relational-data-streams-TbHtWk0R0Y
Publisher
Springer US
Copyright
Copyright © 2016 by The Author(s)
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; Computing Methodologies; Simulation and Modeling; Language Translation and Linguistics
ISSN
0885-6125
eISSN
1573-0565
D.O.I.
10.1007/s10994-016-5596-2
Publisher site
See Article on Publisher Site

Abstract

To date, Inductive Logic Programming (ILP) systems have largely assumed that all data needed for learning have been provided at the onset of model construction. Increasingly, for application areas like telecommunications, astronomy, text processing, financial markets and biology, machine-generated data are being generated continuously and on a vast scale. We see at least four kinds of problems that this presents for ILP: (1) it may not be possible to store all of the data, even in secondary memory; (2) even if it were possible to store the data, it may be impractical to construct an acceptable model using partitioning techniques that repeatedly perform expensive coverage or subsumption-tests on the data; (3) models constructed at some point may become less effective, or even invalid, as more data become available (exemplified by the “drift” problem when identifying concepts); and (4) the representation of the data instances may need to change as more data become available (a kind of “language drift” problem). In this paper, we investigate the adoption of a stream-based on-line learning approach to relational data. Specifically, we examine the representation of relational data in both an infinite-attribute setting, and in the usual fixed-attribute setting, and develop implementations that use ILP engines in combination with on-line model-constructors. The behaviour of each program is investigated using a set of controlled experiments, and performance in practical settings is demonstrated by constructing complete theories for some of the largest biochemical datasets examined by ILP systems to date, including one with a million examples; to the best of our knowledge, the first time this has been empirically demonstrated with ILP on a real-world data set.

Journal

Machine LearningSpringer Journals

Published: Dec 3, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off