An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states

An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using... We present an efficient scheme for five-party quantum state sharing (QSTS) of an arbitrary m-qubit state with multiqubit cluster states. Unlike the three-partite QSTS schemes using the same quantum channel [Phys. Rev. A 78, 062333 (2008)], our scheme for sharing of quantum information among five parties utilizing a cluster state as an entangled resource. It is found that the six-partite cluster state can be used for QSTS of an entangled state, the five-partite cluster state can be used for QSTS of an arbitrary two-qubit state and also can be used for QSTS of an arbitrary m-qubit state. It involves two-qubit Bell-basis or three-qubit GHZ-basis measurements, not multipartite joint measurements, which makes it more convenient than some previous schemes. In addition, the total efficiency really approaches the maximal value. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states

Loading next page...
 
/lp/springer_journal/an-efficient-scheme-for-five-party-quantum-state-sharing-of-an-aNCHBsyJ2R
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-010-0211-0
Publisher site
See Article on Publisher Site

Abstract

We present an efficient scheme for five-party quantum state sharing (QSTS) of an arbitrary m-qubit state with multiqubit cluster states. Unlike the three-partite QSTS schemes using the same quantum channel [Phys. Rev. A 78, 062333 (2008)], our scheme for sharing of quantum information among five parties utilizing a cluster state as an entangled resource. It is found that the six-partite cluster state can be used for QSTS of an entangled state, the five-partite cluster state can be used for QSTS of an arbitrary two-qubit state and also can be used for QSTS of an arbitrary m-qubit state. It involves two-qubit Bell-basis or three-qubit GHZ-basis measurements, not multipartite joint measurements, which makes it more convenient than some previous schemes. In addition, the total efficiency really approaches the maximal value.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 17, 2010

References

  • An efficient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs
    Deng, F.G.; Long, G.L.; Zhou, H.Y.
  • Bidirectional quantum secret sharing and secret splitting with polarized single photons
    Deng, F.G.; Zhou, H.Y.; Long, G.L.
  • Multiparty secret sharing of quantum information based on entanglement swapping
    Li, Y.M.; Zhang, K.S.; Peng, K.C.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off