An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts

An efficient downstream box fusion allows high-level accumulation of active bacterial... Production of enzymes for lignocellulose hydrolysis in planta has been proposed as a lower-cost alternative to microbial production, with plastid transformation as a preferred method due to high foreign protein yields. An important regulator of chloroplast protein production is the downstream box (DB) region, located immediately downstream of the start codon. Protein accumulation can vary over several orders of magnitude by altering the DB region. Experiments in bacteria have suggested that these differences in protein accumulation may result from changes in translation efficiency, though the precise mechanism of DB function is not known. In this study, three DB regions were fused to the bglC ORF encoding a β-glucosidase from the thermophilic bacterium Thermobifida fusca and inserted into the tobacco (Nicotiana tabacum) plastid genome. More than a two order of magnitude of difference in BglC protein accumulation was observed, dependent on the identity of the DB fusion. Differential transcript accumulation explained some the observed differences in protein accumulation, but in addition, less 3′ degradation of bglC transcripts was observed in transgenic plants that accumulated the most BglC enzyme. Chloroplast-produced BglC was active against both pure cellobiose and against tobacco lignocellulose. These experiments demonstrate the potential utility of transplastomic plants as a vehicle for heterologous β-glucosidase production for the cellulosic ethanol industry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts

Loading next page...
 
/lp/springer_journal/an-efficient-downstream-box-fusion-allows-high-level-accumulation-of-BNlZBt7WxX
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Sciences ; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9743-7
Publisher site
See Article on Publisher Site

Abstract

Production of enzymes for lignocellulose hydrolysis in planta has been proposed as a lower-cost alternative to microbial production, with plastid transformation as a preferred method due to high foreign protein yields. An important regulator of chloroplast protein production is the downstream box (DB) region, located immediately downstream of the start codon. Protein accumulation can vary over several orders of magnitude by altering the DB region. Experiments in bacteria have suggested that these differences in protein accumulation may result from changes in translation efficiency, though the precise mechanism of DB function is not known. In this study, three DB regions were fused to the bglC ORF encoding a β-glucosidase from the thermophilic bacterium Thermobifida fusca and inserted into the tobacco (Nicotiana tabacum) plastid genome. More than a two order of magnitude of difference in BglC protein accumulation was observed, dependent on the identity of the DB fusion. Differential transcript accumulation explained some the observed differences in protein accumulation, but in addition, less 3′ degradation of bglC transcripts was observed in transgenic plants that accumulated the most BglC enzyme. Chloroplast-produced BglC was active against both pure cellobiose and against tobacco lignocellulose. These experiments demonstrate the potential utility of transplastomic plants as a vehicle for heterologous β-glucosidase production for the cellulosic ethanol industry.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 30, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off