An efficient approach to enhance bulk-driven amplifiers

An efficient approach to enhance bulk-driven amplifiers In this paper, a single-stage class AB bulk-driven amplifier operating in weak inversion region is proposed. The presented amplifier benefits from an improved high input swing structure using quasi-floating-gate technique. The composite transistors and recycling configuration used at the input stage enable the input differential pair to operate under low supply voltages with larger transconductance as compared to the conventional models at no expense of power budget. The circuit is designed in 0.18 µm CMOS technology and simulation results show 61.5 dB low frequency gain with the gain bandwidth of 30.15 kHz and 55.3 V/ms average slew rate. The total current of 275 nA and 0.6 V supply voltage make the proposed amplifier a suitable choice for ultra-low-power applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analog Integrated Circuits and Signal Processing Springer Journals

An efficient approach to enhance bulk-driven amplifiers

Loading next page...
 
/lp/springer_journal/an-efficient-approach-to-enhance-bulk-driven-amplifiers-L5Y6jwVQ21
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Circuits and Systems; Electrical Engineering; Signal,Image and Speech Processing
ISSN
0925-1030
eISSN
1573-1979
D.O.I.
10.1007/s10470-017-1010-7
Publisher site
See Article on Publisher Site

Abstract

In this paper, a single-stage class AB bulk-driven amplifier operating in weak inversion region is proposed. The presented amplifier benefits from an improved high input swing structure using quasi-floating-gate technique. The composite transistors and recycling configuration used at the input stage enable the input differential pair to operate under low supply voltages with larger transconductance as compared to the conventional models at no expense of power budget. The circuit is designed in 0.18 µm CMOS technology and simulation results show 61.5 dB low frequency gain with the gain bandwidth of 30.15 kHz and 55.3 V/ms average slew rate. The total current of 275 nA and 0.6 V supply voltage make the proposed amplifier a suitable choice for ultra-low-power applications.

Journal

Analog Integrated Circuits and Signal ProcessingSpringer Journals

Published: Jun 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off