An efficient algorithm for mining top-k on-shelf high utility itemsets

An efficient algorithm for mining top-k on-shelf high utility itemsets High on-shelf utility itemset (HOU) mining is an emerging data mining task which consists of discovering sets of items generating a high profit in transaction databases. The task of HOU mining is more difficult than traditional high utility itemset (HUI) mining, because it also considers the shelf time of items, and items having negative unit profits. HOU mining can be used to discover more useful and interesting patterns in real-life applications than traditional HUI mining. Several algorithms have been proposed for this task. However, a major drawback of these algorithms is that it is difficult for users to find a suitable value for the minimum utility threshold parameter. If the threshold is set too high, not enough patterns are found. And if the threshold is set too low, too many patterns will be found and the algorithm may use an excessive amount of time and memory. To address this issue, we propose to address the problem of top-k on-shelf high utility itemset mining, where the user directly specifies k, the desired number of patterns to be output instead of specifying a minimum utility threshold value. An efficient algorithm named KOSHU (fast top-K on-shelf high utility itemset miner) is proposed to mine the top-k HOUs efficiently, while considering on-shelf time periods of items, and items having positive and/or negative unit profits. KOSHU introduces three novel strategies, named efficient estimated co-occurrence maximum period rate pruning, period utility pruning and concurrence existing of a pair 2-itemset pruning to reduce the search space. KOSHU also incorporates several novel optimizations and a faster method for constructing utility-lists. An extensive performance study on real-life and synthetic datasets shows that the proposed algorithm is efficient both in terms of runtime and memory consumption and has excellent scalability. Knowledge and Information Systems Springer Journals

An efficient algorithm for mining top-k on-shelf high utility itemsets

Loading next page...
Springer London
Copyright © 2017 by Springer-Verlag London
Computer Science; Information Systems and Communication Service; IT in Business
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial