An efficient admission control mechanism for optical burst-switched networks

An efficient admission control mechanism for optical burst-switched networks This article proposes the load-level-based admission control (LLAC) mechanism in order to provide service differentiation for optical burst-switched networks. The LLAC mechanism admits bursts of a given service class according to the network load and a class-associated parameter. Based on this parameter, called load level, the proposed mechanism differentiates the burst blocking probability experienced by each service class. We develop an analytical model for the proposed mechanism and evaluate its performance for different configurations through mathematical analysis. The results show that the load-level-based mechanism reduces the blocking probability of high-priority bursts by two orders of magnitude or more depending on the analyzed scenario. In addition, compared to other similar mechanisms, the load-level-based mechanism effectively differentiates the services in all analyzed configurations, requires less states in optical burst switching (OBS) nodes, and does not suffer from priority inversion. Photonic Network Communications Springer Journals

An efficient admission control mechanism for optical burst-switched networks

Loading next page...
Springer US
Copyright © 2008 by Springer Science+Business Media, LLC
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial