An effective buffering architecture for optical packet switching networks

An effective buffering architecture for optical packet switching networks A novel optical buffering architecture for Optical Packet Switching (OPS) networks is proposed in this article. The architecture which adopts a fiber-sharing mechanism aims at solving the problem of using a large number of fiber delay lines that are used to solve resource contention in the core node in OPS networks. The new architecture employs fewer fiber delay lines compared to other simple architectures, but can achieve the same performance. Simulation results and analysis show that the new architecture can decrease packet loss probability effectively and achieve reasonable performance in average packet delay. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

An effective buffering architecture for optical packet switching networks

Loading next page...
 
/lp/springer_journal/an-effective-buffering-architecture-for-optical-packet-switching-h32yUOcEw6
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0135-0
Publisher site
See Article on Publisher Site

Abstract

A novel optical buffering architecture for Optical Packet Switching (OPS) networks is proposed in this article. The architecture which adopts a fiber-sharing mechanism aims at solving the problem of using a large number of fiber delay lines that are used to solve resource contention in the core node in OPS networks. The new architecture employs fewer fiber delay lines compared to other simple architectures, but can achieve the same performance. Simulation results and analysis show that the new architecture can decrease packet loss probability effectively and achieve reasonable performance in average packet delay.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Jun 27, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off