An early congestion feedback and rate adjustment schemes for many-to-one communication in cloud-based data center networks

An early congestion feedback and rate adjustment schemes for many-to-one communication in... Cloud data centers are playing an important role for providing many online services such as web search, cloud computing and back-end computations such as MapReduce and BigTable. In data center network, there are three basic requirements for the data center transport protocol such as high throughput, low latency and high burst tolerance. Unfortunately, conventional TCP protocols are unable to meet the requirements of data center transport protocol. One of the main practical issues of great importance is TCP Incast to occur many-to-one communication sessions in data centers, in which TCP experiences sharp degradation of throughput and higher delay. This important issue in data center networks has already attracted the researchers because of the development of cloud computing. Recently, few solutions have been proposed for improving the performance of TCP in data center networks. Among that, DCTCP is the most popular protocol in academic as well as industry areas due to its better performance in terms of throughput and latency. Although DCTCP provides significant performance improvements, there are still some defects in maintaining the queue length and throughput when the number of servers is too large. To address this problem, we propose a simple and efficient TCP protocol, namely NewDCTCP as an improvement of DCTCP in data center networks. NewDCTCP modified the congestion feedback and window adjusting schemes of DCTCP to mitigate the TCP Incast problem. Through detailed QualNet experiments, we show that NewDCTCP significantly outperforms DCTCP and TCP in terms of goodput and latency. The experimental results also demonstrate that NewDCTCP flows provide better link efficiency and fairness with respect to DCTCP. Photonic Network Communications Springer Journals

An early congestion feedback and rate adjustment schemes for many-to-one communication in cloud-based data center networks

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial