An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis

An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis miR828 in Arabidopsis triggers the cleavage of Trans-Acting SiRNA Gene 4 (TAS4) transcripts and production of small interfering RNAs (ta-siRNAs). One siRNA, TAS4-siRNA81(−), targets a set of MYB transcription factors including PAP1, PAP2, and MYB113 which regulate the anthocyanin biosynthesis pathway. Interestingly, miR828 also targets MYB113, suggesting a close relationship between these MYBs, miR828, and TAS4, but their evolutionary origins are unknown. We found that PAP1, PAP2, and TAS4 expression is induced specifically by exogenous treatment with sucrose and glucose in seedlings. The induction is attenuated in abscisic acid (ABA) pathway mutants, especially in abi3-1 and abi5-1 for PAP1 or PAP2, while no such effect is observed for TAS4. PAP1 is under regulation by TAS4, demonstrated by the accumulation of PAP1 transcripts and anthocyanin in ta-siRNA biogenesis pathway mutants. TAS4-siR81(−) expression is induced by physiological concentrations of Suc and Glc and in pap1-D, an activation-tagged line, indicating a feedback regulatory loop exists between PAP1 and TAS4. Bioinformatic analysis revealed MIR828 homologues in dicots and gymnosperms, but only in one basal monocot, whereas TAS4 is only found in dicots. Consistent with this observation, PAP1, PAP2, and MYB113 dicot paralogs show peptide and nucleotide footprints for the TAS4-siR81(−) binding site, providing evidence for purifying selection in contrast to monocots. Extended sequence similarities between MIR828, MYBs, and TAS4 support an inverted duplication model for the evolution of MIR828 from an ancestral gymnosperm MYB gene and subsequent formation of TAS4 by duplication of the miR828* arm. We obtained evidence by modified 5′-RACE for a MYB mRNA cleavage product guided by miR828 in Pinus resinosa. Taken together, our results suggest that regulation of anthocyanin biosynthesis by TAS4 and miR828 in higher plants is evolutionarily significant and consistent with the evolution of TAS4 since the dicot—monocot divergence. Plant Molecular Biology Springer Journals

An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis

Loading next page...
Springer Netherlands
Copyright © 2011 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial