We consider an inverse quadratic programming (QP) problem in which the parameters in the objective function of a given QP problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a minimization problem with a positive semidefinite cone constraint and its dual is a linearly constrained semismoothly differentiable (SC 1 ) convex programming problem with fewer variables than the original one. We demonstrate the global convergence of the augmented Lagrangian method for the dual problem and prove that the convergence rate of primal iterates, generated by the augmented Lagrange method, is proportional to 1/ r , and the rate of multiplier iterates is proportional to $1/\sqrt{r}$ , where r is the penalty parameter in the augmented Lagrangian. As the objective function of the dual problem is a SC 1 function involving the projection operator onto the cone of symmetrically semi-definite matrices, the analysis requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and properties of the projection operator in the symmetric-matrix space. Furthermore, the semismooth Newton method with Armijo line search is applied to solve the subproblems in the augmented Lagrange approach, which is proven to have global convergence and local quadratic rate. Finally numerical results, implemented by the augmented Lagrangian method, are reported.
Applied Mathematics and Optimization – Springer Journals
Published: Feb 1, 2010
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue