An ATP-Sensitive K+ Current that Regulates Progression Through Early G1 Phase of the Cell Cycle in MCF-7 Human Breast Cancer Cells

An ATP-Sensitive K+ Current that Regulates Progression Through Early G1 Phase of the Cell Cycle... Whole-cell recordings were used to identify in MCF-7 human breast cancer cells the ion current(s) required for progression through G1 phase of the cell cycle. Macroscopic current-voltage curves were fitted by the sum of three currents, including linear hyperpolarized, linear depolarized and outwardly rectifying currents. Both linear currents, but not the outwardly rectifying current, were increased by 1 μm intracellular Ca2+ and blocked by 2 mm intracellular ATP. When tested at concentrations previously shown to inhibit proliferation by 50%, linogliride, glibenclamide and quinidine inhibited the linear hyperpolarized current, and quinidine and linogliride inhibited the linear depolarized current; none of these agents affected the outwardly rectifying current. In contrast, tetraethylammonium completely inhibited the outwardly rectifying current, but did not inhibit either linear current. Changing the bath solution to symmetric K+ shifted the reversal potential of the linear hyperpolarized current from near the K+ equilibrium potential (−84 mV) to −4 mV. Arrest of the cell cycle in early G1 by quinidine was associated with significantly smaller linear hyperpolarized currents, without a change in the linear depolarized or outwardly rectifying currents, but this reduction was not observed with arrest by lovastatin at a site ≈6 hr later in G1. The linear hyperpolarized current was significantly larger in ras-transformed than in untransformed cells. We conclude that the linear hyperpolarized current is an ATP-sensitive K+ current required for progression of MCF-7 cells through G1 phase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

An ATP-Sensitive K+ Current that Regulates Progression Through Early G1 Phase of the Cell Cycle in MCF-7 Human Breast Cancer Cells

Loading next page...
 
/lp/springer_journal/an-atp-sensitive-k-current-that-regulates-progression-through-early-g1-HRqIIJMlCU
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900556
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial