An asynchronous direct solver for banded linear systems

An asynchronous direct solver for banded linear systems Banded linear systems occur frequently in mathematics and physics. However, direct solvers for large systems cannot be performed in parallel without communication. The aim of this paper is to develop a general asymmetric banded solver with a direct approach that scales across many processors efficiently. The key mechanism behind this is that reduction to a row-echelon form is not required by the solver. The method requires more floating point calculations than a standard solver such as LU decomposition, but by leveraging multiple processors the overall solution time is reduced. We present a solver using a superposition approach that decomposes the original linear system into q subsystems, where q is the number of superdiagonals. These methods show optimal computational cost when q processors are available because each system can be solved in parallel asynchronously. This is followed by a q×q dense constraint matrix problem that is solved before a final vectorized superposition is performed. Reduction to row echelon form is not required by the solver, and hence the method avoids fill-in. The algorithm is first developed for tridiagonal systems followed by an extension to arbitrary banded systems. Accuracy and performance is compared with existing solvers and software is provided in the supplementary material. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Numerical Algorithms Springer Journals

An asynchronous direct solver for banded linear systems

Loading next page...
 
/lp/springer_journal/an-asynchronous-direct-solver-for-banded-linear-systems-uW2OOih5CU
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York (outside the USA)
Subject
Computer Science; Numeric Computing; Algorithms; Algebra; Theory of Computation; Numerical Analysis
ISSN
1017-1398
eISSN
1572-9265
D.O.I.
10.1007/s11075-016-0251-3
Publisher site
See Article on Publisher Site

Abstract

Banded linear systems occur frequently in mathematics and physics. However, direct solvers for large systems cannot be performed in parallel without communication. The aim of this paper is to develop a general asymmetric banded solver with a direct approach that scales across many processors efficiently. The key mechanism behind this is that reduction to a row-echelon form is not required by the solver. The method requires more floating point calculations than a standard solver such as LU decomposition, but by leveraging multiple processors the overall solution time is reduced. We present a solver using a superposition approach that decomposes the original linear system into q subsystems, where q is the number of superdiagonals. These methods show optimal computational cost when q processors are available because each system can be solved in parallel asynchronously. This is followed by a q×q dense constraint matrix problem that is solved before a final vectorized superposition is performed. Reduction to row echelon form is not required by the solver, and hence the method avoids fill-in. The algorithm is first developed for tridiagonal systems followed by an extension to arbitrary banded systems. Accuracy and performance is compared with existing solvers and software is provided in the supplementary material.

Journal

Numerical AlgorithmsSpringer Journals

Published: Jan 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off