An assessment of the effect of printing orientation, density, and filler pattern on the compressive performance of 3D printed ABS structures by fuse deposition

An assessment of the effect of printing orientation, density, and filler pattern on the... Acrylonitrile butadiene styrene (ABS) specimens manufactured by fused deposition are tested under uniaxial compression in order to judge the effectiveness of printing orientation, density, and filler patterns in terms of stiffness and strength per printing time. The compressive properties of the 3D printed materials along the three orthogonal directions are studied on cylindrical specimens filled with honeycomb and rectangular patterns. In order to achieve different densities, five filler percentages (0, 20, 30, 40, and 100%) are employed for each type of structure. Specimens filled with honeycomb patterns are stiffer and stronger than those with rectangular patterns only when they are oriented along the applied load. However, structures with rectangular patterns only require roughly half of printing time of those filled honeycomb cells, which yields effective rectangular structures with high elastic properties per printing time. Stress–strain curves reveal that compressive strength and stiffness increase with respect to the structure density. Patterns printed along the loading direction present higher strength and stiffness than on the other orthogonal orientations. Local buckling and compressive failure mechanisms are identified for light weight and heavy structures, respectively. A combination of shear and local buckling failure appeared in honeycomb structures printed transversely with relative densities around 20–40%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

An assessment of the effect of printing orientation, density, and filler pattern on the compressive performance of 3D printed ABS structures by fuse deposition

Loading next page...
 
/lp/springer_journal/an-assessment-of-the-effect-of-printing-orientation-density-and-filler-MY0vuXfX7l
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1314-x
Publisher site
See Article on Publisher Site

Abstract

Acrylonitrile butadiene styrene (ABS) specimens manufactured by fused deposition are tested under uniaxial compression in order to judge the effectiveness of printing orientation, density, and filler patterns in terms of stiffness and strength per printing time. The compressive properties of the 3D printed materials along the three orthogonal directions are studied on cylindrical specimens filled with honeycomb and rectangular patterns. In order to achieve different densities, five filler percentages (0, 20, 30, 40, and 100%) are employed for each type of structure. Specimens filled with honeycomb patterns are stiffer and stronger than those with rectangular patterns only when they are oriented along the applied load. However, structures with rectangular patterns only require roughly half of printing time of those filled honeycomb cells, which yields effective rectangular structures with high elastic properties per printing time. Stress–strain curves reveal that compressive strength and stiffness increase with respect to the structure density. Patterns printed along the loading direction present higher strength and stiffness than on the other orthogonal orientations. Local buckling and compressive failure mechanisms are identified for light weight and heavy structures, respectively. A combination of shear and local buckling failure appeared in honeycomb structures printed transversely with relative densities around 20–40%.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off