An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases

An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA) and its methyl ester methyl jasmonate (MeJA). We identified, by differential display, an Arabidopsis gene (OPR3) induced after wounding. OPR3 is homologous to members of the flavin mononucleotide (FMN) binding proteins, including the old yellow enzyme (OYE) from yeast and 12-oxophytodienoate-10,11-reductase (OPR) from Arabidopsis. Transcripts of OPR3 rapidly accumulated in leaves after wounding and MeJA treatment, but they were detected in various tissues of unwounded plants at relatively low levels. Expression of the OPR3 gene was significantly reduced in wounded leaves of the coi1 mutant, indicating partial dependence on jasmonate perception for full induction of the gene. The recombinant protein of OPR3 cross-reacted with an antiserum raised against the OYE protein, and showed oxidation of β-NADPH when OPDA or 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2), an analogue of OPDA, was used as substrate. β-NADPH oxidation was not observed when MeJA, which lacks the double bond in the ketone ring, was used as substrate. The recombinant OPR3 protein also showed β-NADPH oxidation activity in the presence of cyclohexenone, but not cyclohexanone, suggesting that the enzyme has specificity to cleavage of olefinic bonds in cyclic enones. The results show that the OPR3 gene product represents a new OPR of Arabidopsis induced after wounding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases

Loading next page...
 
/lp/springer_journal/an-arabidopsis-gene-induced-by-wounding-functionally-homologous-to-asldUEFz2F
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006464822434
Publisher site
See Article on Publisher Site

Abstract

The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA) and its methyl ester methyl jasmonate (MeJA). We identified, by differential display, an Arabidopsis gene (OPR3) induced after wounding. OPR3 is homologous to members of the flavin mononucleotide (FMN) binding proteins, including the old yellow enzyme (OYE) from yeast and 12-oxophytodienoate-10,11-reductase (OPR) from Arabidopsis. Transcripts of OPR3 rapidly accumulated in leaves after wounding and MeJA treatment, but they were detected in various tissues of unwounded plants at relatively low levels. Expression of the OPR3 gene was significantly reduced in wounded leaves of the coi1 mutant, indicating partial dependence on jasmonate perception for full induction of the gene. The recombinant protein of OPR3 cross-reacted with an antiserum raised against the OYE protein, and showed oxidation of β-NADPH when OPDA or 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2), an analogue of OPDA, was used as substrate. β-NADPH oxidation was not observed when MeJA, which lacks the double bond in the ketone ring, was used as substrate. The recombinant OPR3 protein also showed β-NADPH oxidation activity in the presence of cyclohexenone, but not cyclohexanone, suggesting that the enzyme has specificity to cleavage of olefinic bonds in cyclic enones. The results show that the OPR3 gene product represents a new OPR of Arabidopsis induced after wounding.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off