An approach to vision-based localisation with binary features for partially sighted people

An approach to vision-based localisation with binary features for partially sighted people In this paper, an approach to the development of a localisation system for supporting visually impaired people is proposed. Instead of using unique visual markers or radio tags, this approach relies on image recognition with local feature descriptors. In order to provide fast and robust keypoint description, a new binary descriptor is introduced. The descriptor computation pipeline selects four image patches with scale-dependent sizes around the keypoint and then places five square pixel blocks within each patch. The binary string is obtained in pairwise tests between directional gradients obtained for blocks. In contrary to other binary descriptors, tests take into account gradient values obtained for blocks from all patches. The proposed approach is extensively tested using six demanding image datasets. Some of them contain labelled indoor and outdoor images under different real-world transformations, as well as challenging illumination conditions. Two datasets were prepared for the needs of this research. Experimental evaluation reveals that the introduced binary descriptor is more robust and achieves shorter computation time than state-of-the-art floating-point and binary descriptors. Furthermore, the approach outperforms other techniques in image recognition tasks, making it more suitable for the vision-based localisation. "Signal, Image and Video Processing" Springer Journals

An approach to vision-based localisation with binary features for partially sighted people

Loading next page...
Springer London
Copyright © 2017 by The Author(s)
Engineering; Signal,Image and Speech Processing; Image Processing and Computer Vision; Computer Imaging, Vision, Pattern Recognition and Graphics; Multimedia Information Systems
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial