# An application of the Baker method to Jeśmanowicz’ conjecture on Pythagorean triples

An application of the Baker method to Jeśmanowicz’ conjecture on Pythagorean triples Let n be a positive integer, and let (a, b, c) be a primitive Pythagorean triple with \$\$a^2+b^2=c^2\$\$ a 2 + b 2 = c 2 . A positive integer solution (x, y, z) of the equation \$\$(an)^x+(bn)^y=(cn)^z\$\$ ( a n ) x + ( b n ) y = ( c n ) z is called exceptional if \$\$(x,y,z)\ne (2,2,2)\$\$ ( x , y , z ) ≠ ( 2 , 2 , 2 ) . Sixty years ago, L. Jeśmanowicz conjectured that, for any n, the equation has no exceptional solutions. This problem is not resolved as yet. In this paper, using the Baker method, we prove that if \$\$n>1\$\$ n > 1 , \$\$b+1=c\$\$ b + 1 = c and \$\$c>500000\$\$ c > 500000 , then the equation has no exceptional solutions (x, y, z) with \$\$y>z>x\$\$ y > z > x . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Springer Journals

# An application of the Baker method to Jeśmanowicz’ conjecture on Pythagorean triples

, Volume 112 (2) – Feb 28, 2017
6 pages

/lp/springer_journal/an-application-of-the-baker-method-to-je-manowicz-conjecture-on-7H3JSvEn8L
Publisher
Springer Journals
Subject
Mathematics; Mathematics, general; Applications of Mathematics; Theoretical, Mathematical and Computational Physics
ISSN
1578-7303
eISSN
1579-1505
D.O.I.
10.1007/s13398-017-0384-9
Publisher site
See Article on Publisher Site

### Abstract

Let n be a positive integer, and let (a, b, c) be a primitive Pythagorean triple with \$\$a^2+b^2=c^2\$\$ a 2 + b 2 = c 2 . A positive integer solution (x, y, z) of the equation \$\$(an)^x+(bn)^y=(cn)^z\$\$ ( a n ) x + ( b n ) y = ( c n ) z is called exceptional if \$\$(x,y,z)\ne (2,2,2)\$\$ ( x , y , z ) ≠ ( 2 , 2 , 2 ) . Sixty years ago, L. Jeśmanowicz conjectured that, for any n, the equation has no exceptional solutions. This problem is not resolved as yet. In this paper, using the Baker method, we prove that if \$\$n>1\$\$ n > 1 , \$\$b+1=c\$\$ b + 1 = c and \$\$c>500000\$\$ c > 500000 , then the equation has no exceptional solutions (x, y, z) with \$\$y>z>x\$\$ y > z > x .

### Journal

Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. MatemáticasSpringer Journals

Published: Feb 28, 2017

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations