An ancilla-based quantum simulation framework for non-unitary matrices

An ancilla-based quantum simulation framework for non-unitary matrices The success probability in an ancilla-based circuit generally decreases exponentially in the number of qubits consisted in the ancilla. Although the probability can be amplified through the amplitude amplification process, the input dependence of the amplitude amplification makes difficult to sequentially combine two or more ancilla-based circuits. A new version of the amplitude amplification known as the oblivious amplitude amplification runs independently of the input to the system register. This allows us to sequentially combine two or more ancilla-based circuits. However, this type of the amplification only works when the considered system is unitary or non-unitary but somehow close to a unitary. In this paper, we present a general framework to simulate non-unitary processes on ancilla-based quantum circuits in which the success probability is maximized by using the oblivious amplitude amplification. In particular, we show how to extend a non-unitary matrix to an almost unitary matrix. We then employ the extended matrix by using an ancilla-based circuit design along with the oblivious amplitude amplification. Measuring the distance of the produced matrix to the closest unitary matrix, a lower bound for the fidelity of the final state obtained from the oblivious amplitude amplification process is presented. Numerical simulations for random matrices of different sizes show that independent of the system size, the final amplified probabilities are generally around 0.75 and the fidelity of the final state is mostly high and around 0.95. Furthermore, we discuss the complexity analysis and show that combining two such ancilla-based circuits, a matrix product can be implemented. This may lead us to efficiently implement matrix functions represented as infinite matrix products on quantum computers. Quantum Information Processing Springer Journals

An ancilla-based quantum simulation framework for non-unitary matrices

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial