An Analysis of the Use of Qualifications on the Amazon Mechanical Turk Online Labor Market

An Analysis of the Use of Qualifications on the Amazon Mechanical Turk Online Labor Market Several human computation systems use crowdsourcing labor markets to recruit workers. However, it is still a challenge to guarantee that the results produced by workers have a high enough quality. This is particularly difficult in markets based on micro-tasks, where the assessment of the quality of the results needs to be done automatically. Pre-selection of suitable workers is a mechanism that can improve the quality of the results achieved. This can be done by considering worker’s personal information, worker’s historical behavior in the system, or through the use of customized qualification tasks. However, little is known about how requesters use these mechanisms in practice. This study advances present knowledge in worker pre-selection by analyzing data collected from the Amazon Mechanical Turk platform, regarding the way requesters use qualifications to this end. Furthermore, the influence of using customized qualification tasks in the quality of the results produced by workers is investigated. Results show that most jobs (93.6%) use some mechanism for the pre-selection of workers. While most workers use standard qualifications provided by the system, the few requesters that submit most of the jobs prefer to use customized ones. Regarding worker behavior, we identified a positive and significant correlation between the propensity of the worker to possess a particular qualification, and both the number of tasks that require this qualification, and the reward offered for the tasks that require the qualification, although this correlation is weak. To assess the impact that the use of customized qualifications has in the quality of the results produced, we have executed experiments with three different types of tasks using both unqualified and qualified workers. The results showed that, generally, qualified workers provide more accurate answers, when compared to unqualified ones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computer Supported Cooperative Work (CSCW) Springer Journals

An Analysis of the Use of Qualifications on the Amazon Mechanical Turk Online Labor Market

Loading next page...
 
/lp/springer_journal/an-analysis-of-the-use-of-qualifications-on-the-amazon-mechanical-turk-4fCEZwbFaP
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Computer Science; Computer Science, general; User Interfaces and Human Computer Interaction; Psychology, general; Social Sciences, general
ISSN
0925-9724
eISSN
1573-7551
D.O.I.
10.1007/s10606-017-9283-z
Publisher site
See Article on Publisher Site

Abstract

Several human computation systems use crowdsourcing labor markets to recruit workers. However, it is still a challenge to guarantee that the results produced by workers have a high enough quality. This is particularly difficult in markets based on micro-tasks, where the assessment of the quality of the results needs to be done automatically. Pre-selection of suitable workers is a mechanism that can improve the quality of the results achieved. This can be done by considering worker’s personal information, worker’s historical behavior in the system, or through the use of customized qualification tasks. However, little is known about how requesters use these mechanisms in practice. This study advances present knowledge in worker pre-selection by analyzing data collected from the Amazon Mechanical Turk platform, regarding the way requesters use qualifications to this end. Furthermore, the influence of using customized qualification tasks in the quality of the results produced by workers is investigated. Results show that most jobs (93.6%) use some mechanism for the pre-selection of workers. While most workers use standard qualifications provided by the system, the few requesters that submit most of the jobs prefer to use customized ones. Regarding worker behavior, we identified a positive and significant correlation between the propensity of the worker to possess a particular qualification, and both the number of tasks that require this qualification, and the reward offered for the tasks that require the qualification, although this correlation is weak. To assess the impact that the use of customized qualifications has in the quality of the results produced, we have executed experiments with three different types of tasks using both unqualified and qualified workers. The results showed that, generally, qualified workers provide more accurate answers, when compared to unqualified ones.

Journal

Computer Supported Cooperative Work (CSCW)Springer Journals

Published: Jul 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off