Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An anaerobically inducible early (aie) gene family from rice

An anaerobically inducible early (aie) gene family from rice One of the major abiotic stresses that affect plant growth and development is anoxia or hypoxia. Plants respond to anoxia by regulation of gene expression at both the transcriptional and translational levels. Genes involved in such regulation are expected to be expressed soon after onset of anoxia. To date, however, anaerobically regulated genes that have been characterized predominantly encode enzymes for sugar phosphate metabolism, and are induced after several hours of anaerobic conditions. Early induced genes, those responding after 1–2 h of anoxia, have not been studied extensively. To study the early anaerobic response we investigated the most flooding-tolerant variety of rice, FR13A (flood-resistant). We used differential display techniques to identify cDNA fragments representing mRNAs that are induced within 90 min of anoxia. We isolated two cDNA fragments and one full-length cDNA that were induced to high levels. These cDNAs were found to be members of a family of 2–3 genes, which were called the aie (anaerobically inducible early) gene family. Northern blot analyses showed that the mRNA levels of aie genes peaked after 1.5 to 3 h of anoxia and were still at high levels after 72 h of anoxia. RNase protection assays showed 4–5 different protected bands indicating multiple transcripts from the aie gene family. Sequence analyses of the full-length cDNA showed an open reading frame that putatively encodes a 14 kDa protein of 127 amino acid residues. Neither the nucleotide nor the deduced amino acid sequences of this gene showed any significant homology to any known genes or proteins present in the GenBank or SwissProt databases. This novel gene, that is induced so early under anoxia in plants, may play an important role in plant metabolism under anaerobic conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

An anaerobically inducible early (aie) gene family from rice

Plant Molecular Biology , Volume 40 (4) – Oct 19, 2004

Loading next page...
1
 
/lp/springer_journal/an-anaerobically-inducible-early-aie-gene-family-from-rice-bHxK8UGT6o

References (43)

Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1006284014613
Publisher site
See Article on Publisher Site

Abstract

One of the major abiotic stresses that affect plant growth and development is anoxia or hypoxia. Plants respond to anoxia by regulation of gene expression at both the transcriptional and translational levels. Genes involved in such regulation are expected to be expressed soon after onset of anoxia. To date, however, anaerobically regulated genes that have been characterized predominantly encode enzymes for sugar phosphate metabolism, and are induced after several hours of anaerobic conditions. Early induced genes, those responding after 1–2 h of anoxia, have not been studied extensively. To study the early anaerobic response we investigated the most flooding-tolerant variety of rice, FR13A (flood-resistant). We used differential display techniques to identify cDNA fragments representing mRNAs that are induced within 90 min of anoxia. We isolated two cDNA fragments and one full-length cDNA that were induced to high levels. These cDNAs were found to be members of a family of 2–3 genes, which were called the aie (anaerobically inducible early) gene family. Northern blot analyses showed that the mRNA levels of aie genes peaked after 1.5 to 3 h of anoxia and were still at high levels after 72 h of anoxia. RNase protection assays showed 4–5 different protected bands indicating multiple transcripts from the aie gene family. Sequence analyses of the full-length cDNA showed an open reading frame that putatively encodes a 14 kDa protein of 127 amino acid residues. Neither the nucleotide nor the deduced amino acid sequences of this gene showed any significant homology to any known genes or proteins present in the GenBank or SwissProt databases. This novel gene, that is induced so early under anoxia in plants, may play an important role in plant metabolism under anaerobic conditions.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

There are no references for this article.