An adaptive load-aware burst assembly scheme to achieve optimal performance of FDL buffers in OBS networks

An adaptive load-aware burst assembly scheme to achieve optimal performance of FDL buffers in OBS... Optical burst switching (OBS) is regarded as one of the most promising switching technologies for next generation optical networks. Contention resolution of data bursts is a critical mission to implement practical OBS. The use of fiber delay line (FDL) buffers has received a lot of attention as a fundamental but effective solution to resolve burst contention. Several studies have investigated the way to achieve the optimal performance of FDL buffers at a single-node level. However, this article studies how to achieve the best performance of OBS networks with FDL buffers under varying traffic condition at a network level. For this purpose, we propose an adaptive load-aware burst assembly (ALBA) scheme, which adaptively adjusts the size threshold of burst assembler optimized to the current network traffic load. A piggybacking method used to deliver the traffic-load information from core nodes to ingress edge nodes accelerates the adaptiveness of the proposed scheme by reducing the update time of the size threshold. The effectiveness of the ALBA scheme is proved by comparing with No-FDL case and fixed size-threshold cases under changing traffic-load environment from extensive simulation tests. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

An adaptive load-aware burst assembly scheme to achieve optimal performance of FDL buffers in OBS networks

Loading next page...
 
/lp/springer_journal/an-adaptive-load-aware-burst-assembly-scheme-to-achieve-optimal-vUtkmOdhLN
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0158-6
Publisher site
See Article on Publisher Site

Abstract

Optical burst switching (OBS) is regarded as one of the most promising switching technologies for next generation optical networks. Contention resolution of data bursts is a critical mission to implement practical OBS. The use of fiber delay line (FDL) buffers has received a lot of attention as a fundamental but effective solution to resolve burst contention. Several studies have investigated the way to achieve the optimal performance of FDL buffers at a single-node level. However, this article studies how to achieve the best performance of OBS networks with FDL buffers under varying traffic condition at a network level. For this purpose, we propose an adaptive load-aware burst assembly (ALBA) scheme, which adaptively adjusts the size threshold of burst assembler optimized to the current network traffic load. A piggybacking method used to deliver the traffic-load information from core nodes to ingress edge nodes accelerates the adaptiveness of the proposed scheme by reducing the update time of the size threshold. The effectiveness of the ALBA scheme is proved by comparing with No-FDL case and fixed size-threshold cases under changing traffic-load environment from extensive simulation tests.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 20, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off