An Adaptive Finite Element Method for the Wave Scattering with Transparent Boundary Condition

An Adaptive Finite Element Method for the Wave Scattering with Transparent Boundary Condition Consider the acoustic wave scattering by an impenetrable obstacle in two dimensions. The model is formulated as a boundary value problem for the Helmholtz equation with a transparent boundary condition. Based on a duality argument technique, an a posteriori error estimate is derived for the finite element method with the truncated Dirichlet-to-Neumann boundary operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of boundary operator which decays exponentially with respect to the truncation parameter. A new adaptive finite element algorithm is proposed for solving the acoustic obstacle scattering problem, where the truncation parameter is determined through the truncation error and the mesh elements for local refinements are marked through the finite element discretization error. Numerical experiments are presented to illustrate the competitive behavior of the proposed adaptive method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Scientific Computing Springer Journals

An Adaptive Finite Element Method for the Wave Scattering with Transparent Boundary Condition

Loading next page...
 
/lp/springer_journal/an-adaptive-finite-element-method-for-the-wave-scattering-with-pCoHY8Ahsg
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Mathematics; Algorithms; Computational Mathematics and Numerical Analysis; Mathematical and Computational Engineering; Theoretical, Mathematical and Computational Physics
ISSN
0885-7474
eISSN
1573-7691
D.O.I.
10.1007/s10915-017-0382-2
Publisher site
See Article on Publisher Site

Abstract

Consider the acoustic wave scattering by an impenetrable obstacle in two dimensions. The model is formulated as a boundary value problem for the Helmholtz equation with a transparent boundary condition. Based on a duality argument technique, an a posteriori error estimate is derived for the finite element method with the truncated Dirichlet-to-Neumann boundary operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of boundary operator which decays exponentially with respect to the truncation parameter. A new adaptive finite element algorithm is proposed for solving the acoustic obstacle scattering problem, where the truncation parameter is determined through the truncation error and the mesh elements for local refinements are marked through the finite element discretization error. Numerical experiments are presented to illustrate the competitive behavior of the proposed adaptive method.

Journal

Journal of Scientific ComputingSpringer Journals

Published: Feb 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off