Aminoethoxydiphenyl Borate and Flufenamic Acid Inhibit Ca2+ Influx Through TRPM2 Channels in Rat Dorsal Root Ganglion Neurons Activated by ADP-Ribose and Rotenone

Aminoethoxydiphenyl Borate and Flufenamic Acid Inhibit Ca2+ Influx Through TRPM2 Channels in Rat... Exposure to oxidative stress causes health problems, including sensory neuron neuropathy and pain. Rotenone is a toxin used to generate intracellular oxidative stress in neurons. However, the mechanism of toxicity in dorsal root ganglion (DRG) neurons has not been characterized. Melastatin-like transient receptor potential 2 (TRPM2) channel activation and inhibition in response to oxidative stress, ADP-ribose (ADPR), flufenamic acid (FFA) and 2-aminoethoxydiphenyl borate (2-APB) in DRG neurons are also not clear. We tested the effects of FFA and 2-APB on ADPR and rotenone-induced TRPM2 cation channel activation in DRG neurons of rats. DRG neurons were freshly isolated from rats and studied with the conventional whole-cell patch-clamp technique. Rotenone, FFA and 2-APB were extracellularly added through the patch chamber, and ADPR was applied intracellularly through the patch pipette. TRPM2 cation currents were consistently induced by ADPR and rotenone. Current densities of the neurons were higher in the ADPR and rotenone groups than in control. The time courses (gating times) in the neurons were longer in the rotenone than in the ADPR group. ADPR and rotenone-induced TRPM2 currents were totally blocked by 2-APB and partially blocked by FFA. In conclusion, TRPM2 channels were constitutively activated by ADPR and rotenone, and 2-APB and FFA induced an inhibitory effect on TRPM2 cation channel currents in rat DRG neurons. Since oxidative stress is a common feature of neuropathic pain and diseases of sensory neurons, the present findings have broad application to the etiology of neuropathic pain and diseases of DRG neurons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Aminoethoxydiphenyl Borate and Flufenamic Acid Inhibit Ca2+ Influx Through TRPM2 Channels in Rat Dorsal Root Ganglion Neurons Activated by ADP-Ribose and Rotenone

Loading next page...
 
/lp/springer_journal/aminoethoxydiphenyl-borate-and-flufenamic-acid-inhibit-ca2-influx-omu5Vd6Hpe
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-011-9363-9
Publisher site
See Article on Publisher Site

Abstract

Exposure to oxidative stress causes health problems, including sensory neuron neuropathy and pain. Rotenone is a toxin used to generate intracellular oxidative stress in neurons. However, the mechanism of toxicity in dorsal root ganglion (DRG) neurons has not been characterized. Melastatin-like transient receptor potential 2 (TRPM2) channel activation and inhibition in response to oxidative stress, ADP-ribose (ADPR), flufenamic acid (FFA) and 2-aminoethoxydiphenyl borate (2-APB) in DRG neurons are also not clear. We tested the effects of FFA and 2-APB on ADPR and rotenone-induced TRPM2 cation channel activation in DRG neurons of rats. DRG neurons were freshly isolated from rats and studied with the conventional whole-cell patch-clamp technique. Rotenone, FFA and 2-APB were extracellularly added through the patch chamber, and ADPR was applied intracellularly through the patch pipette. TRPM2 cation currents were consistently induced by ADPR and rotenone. Current densities of the neurons were higher in the ADPR and rotenone groups than in control. The time courses (gating times) in the neurons were longer in the rotenone than in the ADPR group. ADPR and rotenone-induced TRPM2 currents were totally blocked by 2-APB and partially blocked by FFA. In conclusion, TRPM2 channels were constitutively activated by ADPR and rotenone, and 2-APB and FFA induced an inhibitory effect on TRPM2 cation channel currents in rat DRG neurons. Since oxidative stress is a common feature of neuropathic pain and diseases of sensory neurons, the present findings have broad application to the etiology of neuropathic pain and diseases of DRG neurons.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 21, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off