β-aminobutyric acid-mediated tobacco tolerance to potassium deficiency

β-aminobutyric acid-mediated tobacco tolerance to potassium deficiency β-Aminobutyric acid (BABA) is known as a nonprotein amino acid that can enhance the capacity of plants to resist various biotic and abiotic stresses. However, the role of BABA in protecting tobacco (Nicotiana tabacum L.) against potassium deficiency is not well understood. In this study, we demonstrated that the appropriate concentration of BABA promoted tobacco growth and enhanced plant tolerance to potassium deficiency. BABA protected tobacco from the reduction in the primary root length and chlorophyll content and increased K+ uptake via the regulation of expression of potassium up-taking-related NtHAK, NtLKS, NKT1, and NtKC genes. In addition, BABA affected the balancing between hydrogen peroxide level and peroxidase activity under low-potassium stress. Together, our results suggest that BABA plays a role in enhancing potassium deficiency stress tolerance by increasing K+ uptake, at least in part, via a ROS-dependent mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

β-aminobutyric acid-mediated tobacco tolerance to potassium deficiency

Loading next page...
 
/lp/springer_journal/aminobutyric-acid-mediated-tobacco-tolerance-to-potassium-deficiency-qZse2Y3yty
Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712060088
Publisher site
See Article on Publisher Site

Abstract

β-Aminobutyric acid (BABA) is known as a nonprotein amino acid that can enhance the capacity of plants to resist various biotic and abiotic stresses. However, the role of BABA in protecting tobacco (Nicotiana tabacum L.) against potassium deficiency is not well understood. In this study, we demonstrated that the appropriate concentration of BABA promoted tobacco growth and enhanced plant tolerance to potassium deficiency. BABA protected tobacco from the reduction in the primary root length and chlorophyll content and increased K+ uptake via the regulation of expression of potassium up-taking-related NtHAK, NtLKS, NKT1, and NtKC genes. In addition, BABA affected the balancing between hydrogen peroxide level and peroxidase activity under low-potassium stress. Together, our results suggest that BABA plays a role in enhancing potassium deficiency stress tolerance by increasing K+ uptake, at least in part, via a ROS-dependent mechanism.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off