American Options Exercise Boundary When the Volatility Changes Randomly

American Options Exercise Boundary When the Volatility Changes Randomly The American put option exercise boundary has been studied extensively as a function of time and the underlying asset price. In this paper we analyze its dependence on the volatility, since the Black and Scholes model is used in practice via the (varying) implied volatility parameter. We consider a stochastic volatility model for the underlying asset price. We provide an extension of the regularity results of the American put option price function and we prove that the optimal exercise boundary is a decreasing function of the current volatility process realization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

American Options Exercise Boundary When the Volatility Changes Randomly

Loading next page...
 
/lp/springer_journal/american-options-exercise-boundary-when-the-volatility-changes-vYG52VGrq3
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s002459900112
Publisher site
See Article on Publisher Site

Abstract

The American put option exercise boundary has been studied extensively as a function of time and the underlying asset price. In this paper we analyze its dependence on the volatility, since the Black and Scholes model is used in practice via the (varying) implied volatility parameter. We consider a stochastic volatility model for the underlying asset price. We provide an extension of the regularity results of the American put option price function and we prove that the optimal exercise boundary is a decreasing function of the current volatility process realization.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Feb 1, 2041

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off