Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L.

Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L. Pesticide toxicity causes oxidative stress to plants by generating reactive oxygen species (ROS). The aim of the present study was to observe the role of 24-epibrassinolide (24-EBL) in protection of Brassica juncea L. plants from oxidative stress caused by imidacloprid (IMI) pesticide. Generation of ROS, activities of antioxidative enzymes and chlorophyll contents were estimated using spectrophotometer, whereas organic acid contents were determined using gas chromatography-mass spectrometry (GC-MS). Statistical analysis of data revealed that 24-EBL significantly decreased ROS contents, accompanied by enhanced levels of shoot biomass, chlorophyll contents, organic acid contents and the activities of antioxidative enzymes in B. juncea plants under IMI toxicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L.

Loading next page...
 
/lp/springer_journal/ameliorating-imidacloprid-induced-oxidative-stress-by-24-9CCbUNb30A
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717040124
Publisher site
See Article on Publisher Site

Abstract

Pesticide toxicity causes oxidative stress to plants by generating reactive oxygen species (ROS). The aim of the present study was to observe the role of 24-epibrassinolide (24-EBL) in protection of Brassica juncea L. plants from oxidative stress caused by imidacloprid (IMI) pesticide. Generation of ROS, activities of antioxidative enzymes and chlorophyll contents were estimated using spectrophotometer, whereas organic acid contents were determined using gas chromatography-mass spectrometry (GC-MS). Statistical analysis of data revealed that 24-EBL significantly decreased ROS contents, accompanied by enhanced levels of shoot biomass, chlorophyll contents, organic acid contents and the activities of antioxidative enzymes in B. juncea plants under IMI toxicity.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off