Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L.

Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L. Pesticide toxicity causes oxidative stress to plants by generating reactive oxygen species (ROS). The aim of the present study was to observe the role of 24-epibrassinolide (24-EBL) in protection of Brassica juncea L. plants from oxidative stress caused by imidacloprid (IMI) pesticide. Generation of ROS, activities of antioxidative enzymes and chlorophyll contents were estimated using spectrophotometer, whereas organic acid contents were determined using gas chromatography-mass spectrometry (GC-MS). Statistical analysis of data revealed that 24-EBL significantly decreased ROS contents, accompanied by enhanced levels of shoot biomass, chlorophyll contents, organic acid contents and the activities of antioxidative enzymes in B. juncea plants under IMI toxicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L.

Loading next page...
 
/lp/springer_journal/ameliorating-imidacloprid-induced-oxidative-stress-by-24-9CCbUNb30A
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717040124
Publisher site
See Article on Publisher Site

Abstract

Pesticide toxicity causes oxidative stress to plants by generating reactive oxygen species (ROS). The aim of the present study was to observe the role of 24-epibrassinolide (24-EBL) in protection of Brassica juncea L. plants from oxidative stress caused by imidacloprid (IMI) pesticide. Generation of ROS, activities of antioxidative enzymes and chlorophyll contents were estimated using spectrophotometer, whereas organic acid contents were determined using gas chromatography-mass spectrometry (GC-MS). Statistical analysis of data revealed that 24-EBL significantly decreased ROS contents, accompanied by enhanced levels of shoot biomass, chlorophyll contents, organic acid contents and the activities of antioxidative enzymes in B. juncea plants under IMI toxicity.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off