Alum-based sludge (AbS) recycling for turbidity removal in drinking water treatment: an insight into statistical, technical, and health-related standpoints

Alum-based sludge (AbS) recycling for turbidity removal in drinking water treatment: an insight... This study aimed to evaluate the feasibility of recycling alum-based sludge (AbS) generated from drinking water treatment facility for turbidity removal. A response surface methodology (RSM)-based modeling and factor analysis were first implemented for assessing the optimal conditions of four independent factors, such as initial turbidity concentration, humic acid (HA) concentration, pH, and AbS dose on the water turbidity removal via the use of AbS as a coagulant agent. The optimum values of the four main variables were determined as initial turbidity concentration = 59.65 NTU, pH = 5.56, AbS dose = 19.71 g/L, and HA concentration = 12.28 mg/L, and at the optimum conditions, the percentage of turbidity removal was obtained as 94.81 (± 1.01)% for real water. At the optimum conditions of AbS usage as a coagulant for real water samples, monitoring of water quality parameters of the process indicated no health-related concerns in terms of hardness (all types), alkalinity, pH, residual aluminum, and even bacteriological (fecal and total coliforms) contamination. The results indicated a potential for AbS recycling in the treatment plant as a coagulant agent, although some requirements should be fulfilled before full-scale application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Material Cycles and Waste Management Springer Journals

Alum-based sludge (AbS) recycling for turbidity removal in drinking water treatment: an insight into statistical, technical, and health-related standpoints

Loading next page...
 
/lp/springer_journal/alum-based-sludge-abs-recycling-for-turbidity-removal-in-drinking-Dm3hWXD0i2
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Japan KK, part of Springer Nature
Subject
Engineering; Civil Engineering; Waste Management/Waste Technology; Environmental Management
ISSN
1438-4957
eISSN
1611-8227
D.O.I.
10.1007/s10163-018-0746-1
Publisher site
See Article on Publisher Site

Abstract

This study aimed to evaluate the feasibility of recycling alum-based sludge (AbS) generated from drinking water treatment facility for turbidity removal. A response surface methodology (RSM)-based modeling and factor analysis were first implemented for assessing the optimal conditions of four independent factors, such as initial turbidity concentration, humic acid (HA) concentration, pH, and AbS dose on the water turbidity removal via the use of AbS as a coagulant agent. The optimum values of the four main variables were determined as initial turbidity concentration = 59.65 NTU, pH = 5.56, AbS dose = 19.71 g/L, and HA concentration = 12.28 mg/L, and at the optimum conditions, the percentage of turbidity removal was obtained as 94.81 (± 1.01)% for real water. At the optimum conditions of AbS usage as a coagulant for real water samples, monitoring of water quality parameters of the process indicated no health-related concerns in terms of hardness (all types), alkalinity, pH, residual aluminum, and even bacteriological (fecal and total coliforms) contamination. The results indicated a potential for AbS recycling in the treatment plant as a coagulant agent, although some requirements should be fulfilled before full-scale application.

Journal

Journal of Material Cycles and Waste ManagementSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off