Alternative Respiration Pathways and Secondary Metabolism in Plants with Different Adaptive Strategies under Mineral Deficiency

Alternative Respiration Pathways and Secondary Metabolism in Plants with Different Adaptive... The costs of adaptation respiration, the contribution of different biochemical pathways of respiration and alternative oxidases to the adaptation to mineral deficiency were compared in plant species representing different types of adaptive strategies: ruderal (Ru) (Amaranthus retroflexus L. and Leonurus quinquelobatus Gilib.) and predominantly stress-tolerant type (St) (Dactylis glomerata L. and Medicago sativa L.). The adaptation component of the total dark respiration was calculated on the basis of the relative growth rate and the ratio of dark respiration to gross photosynthesis. Adaptation costs were greater in less tolerant species. The inhibitory analysis showed that the contribution of glycolytic pathway decreased and the proportion of oxidative pentose phosphate pathway and residual respiration increased in the intolerant Ru-species under the conditions of abiotic stress. Conversely, in the tolerant St-species, the contribution of glycolysis increased. In all species studied, the contribution of the cytochrome pathway of substrate oxidation was reduced and the contribution of the alternative cyanide-insensitive and residual respiration increased under conditions of mineral deficiency; this phenomenon was particularly pronounced in a less tolerant species L. quinquelobatus. In the species characterized by Ru-strategy, stress increased the content of phenolic compounds and shikimic acid. We suppose that the adaptation respiration costs are associated with alternative biochemical pathways and alternative cyanide-resistant oxidase. The role of these pathways in the plants with St-strategy consists in maintaining the active state of oxidative pathways, whereas in the plants with Ru-strategy, they serve to burn excess metabolites and enhance the synthesis of secondary metabolites, which perform protective functions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Alternative Respiration Pathways and Secondary Metabolism in Plants with Different Adaptive Strategies under Mineral Deficiency

Loading next page...
 
/lp/springer_journal/alternative-respiration-pathways-and-secondary-metabolism-in-plants-b0BeyqalJd
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1022973130775
Publisher site
See Article on Publisher Site

Abstract

The costs of adaptation respiration, the contribution of different biochemical pathways of respiration and alternative oxidases to the adaptation to mineral deficiency were compared in plant species representing different types of adaptive strategies: ruderal (Ru) (Amaranthus retroflexus L. and Leonurus quinquelobatus Gilib.) and predominantly stress-tolerant type (St) (Dactylis glomerata L. and Medicago sativa L.). The adaptation component of the total dark respiration was calculated on the basis of the relative growth rate and the ratio of dark respiration to gross photosynthesis. Adaptation costs were greater in less tolerant species. The inhibitory analysis showed that the contribution of glycolytic pathway decreased and the proportion of oxidative pentose phosphate pathway and residual respiration increased in the intolerant Ru-species under the conditions of abiotic stress. Conversely, in the tolerant St-species, the contribution of glycolysis increased. In all species studied, the contribution of the cytochrome pathway of substrate oxidation was reduced and the contribution of the alternative cyanide-insensitive and residual respiration increased under conditions of mineral deficiency; this phenomenon was particularly pronounced in a less tolerant species L. quinquelobatus. In the species characterized by Ru-strategy, stress increased the content of phenolic compounds and shikimic acid. We suppose that the adaptation respiration costs are associated with alternative biochemical pathways and alternative cyanide-resistant oxidase. The role of these pathways in the plants with St-strategy consists in maintaining the active state of oxidative pathways, whereas in the plants with Ru-strategy, they serve to burn excess metabolites and enhance the synthesis of secondary metabolites, which perform protective functions.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off