Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of Orobanche

Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species... We have determined the nucleotide sequence for the Rubisco large subunit from four holoparasitic species of Orobanche. Intact open reading frames are present in two species (O. corymbosa and O. fasciculata), whereas the remaining species (O. cernua and O. ramosa) have rbcL pseudogenes. Sequences for rbcL 5'-UTRs from species of Orobanche have few changes in the promoter and ribosome binding sites compared to photosynthetic higher plants. Comparison of rbcL 3'-UTR sequences for Nicotiana, Ipomoea, Cuscuta, and Orobanche reveal that nucleotide sequences from parasitic plants have regions capable of forming stem-loop structures, but 56–69 nt are deleted upstream of the stem-loop in the parasitic plants compared to their photosynthetic relatives. Although rbcL pseudogenes of O. cernua and O ramosa have many large and small deletions, few indels are shared in common, implying that their common ancestor probably had an intact rbcL reading frame. Intact rbcL reading frames in O. corymbosa and O. fasciculata retain a bias of synonymous over nonsynonymous substitutions and deduced protein sequences are consistent with potentially functional Rubisco large subunit proteins. A conservative model of random substitution processes in pseudogene sequences estimates that the probability is low (P<0.028) that these sequences would retain an open reading frame by chance. Species of Orobanche have either had recent photosynthetic ancestors, implying multiple independent losses of photosynthesis in this genus, or the rbcL gene may serve an unknown function in some nonphotosynthetic plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of Orobanche

Loading next page...
 
/lp/springer_journal/alternate-paths-of-evolution-for-the-photosynthetic-gene-rbcl-in-four-n36yUJ2jW0
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005739223993
Publisher site
See Article on Publisher Site

Abstract

We have determined the nucleotide sequence for the Rubisco large subunit from four holoparasitic species of Orobanche. Intact open reading frames are present in two species (O. corymbosa and O. fasciculata), whereas the remaining species (O. cernua and O. ramosa) have rbcL pseudogenes. Sequences for rbcL 5'-UTRs from species of Orobanche have few changes in the promoter and ribosome binding sites compared to photosynthetic higher plants. Comparison of rbcL 3'-UTR sequences for Nicotiana, Ipomoea, Cuscuta, and Orobanche reveal that nucleotide sequences from parasitic plants have regions capable of forming stem-loop structures, but 56–69 nt are deleted upstream of the stem-loop in the parasitic plants compared to their photosynthetic relatives. Although rbcL pseudogenes of O. cernua and O ramosa have many large and small deletions, few indels are shared in common, implying that their common ancestor probably had an intact rbcL reading frame. Intact rbcL reading frames in O. corymbosa and O. fasciculata retain a bias of synonymous over nonsynonymous substitutions and deduced protein sequences are consistent with potentially functional Rubisco large subunit proteins. A conservative model of random substitution processes in pseudogene sequences estimates that the probability is low (P<0.028) that these sequences would retain an open reading frame by chance. Species of Orobanche have either had recent photosynthetic ancestors, implying multiple independent losses of photosynthesis in this genus, or the rbcL gene may serve an unknown function in some nonphotosynthetic plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 14, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off