Altered white matter microstructure identified with tract-based spatial statistics in irritable bowel syndrome: a diffusion tensor imaging study

Altered white matter microstructure identified with tract-based spatial statistics in irritable... The neural mechanisms underlying the pathophysiology of irritable bowel syndrome(IBS) are far from being completely understood. The purpose of the present study was to investigate potential white matter (WM) microstructural changes and underlying causes for WM impairment in IBS using diffusion tensor imaging. The present prospective study involved 19 patients with IBS and 20 healthy controls. Whole-brain voxel-wise analyses of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were performed by tract-based spatial statistics (TBSS) to localize abnormal WM regions between the 2 groups. We found that IBS patients had significantly reduced FA (P < 0.05) in the splenium of the corpus callosum, the right retrolenticular area of the internal capsule and the right superior corona radiata. We also found increased MD (P < 0.05) in the splenium and body of the corpus callosum, the right retrolenticular area of the internal capsule, the right superior corona radiata and the right posterior limb of the internal capsule. In addition, IBS patients had significantly increased AD (P < 0.05) in the splenium of the corpus callosum, the bilateral retrolenticular area of the internal capsule and the left posterior limb of the internal capsule. We conclude that the WM microstructure is changed in IBS and the underlying pathological basis may be attributed to the axonal injury and loss. These results may lead to a better understanding of the pathophysiology of IBS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Imaging and Behavior Springer Journals

Altered white matter microstructure identified with tract-based spatial statistics in irritable bowel syndrome: a diffusion tensor imaging study

Loading next page...
 
/lp/springer_journal/altered-white-matter-microstructure-identified-with-tract-based-uQykRcf0Ml
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Neuroradiology; Neuropsychology; Psychiatry
ISSN
1931-7557
eISSN
1931-7565
D.O.I.
10.1007/s11682-016-9573-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial