Altered Effective Connectivity Network in Childhood Absence Epilepsy: A Multi-frequency MEG Study

Altered Effective Connectivity Network in Childhood Absence Epilepsy: A Multi-frequency MEG Study Using multi-frequency magnetoencephalography (MEG) data, we investigated whether the effective connectivity (EC) network of patients with childhood absence epilepsy (CAE) is altered during the inter-ictal period in comparison with healthy controls. MEG data from 13 untreated CAE patients and 10 healthy controls were recorded. Correlation analysis and Granger causality analysis were used to construct an EC network at the source level in eight frequency bands. Alterations in the spatial pattern and topology of the network in CAE were investigated by comparing the patients with the controls. The network pattern was altered mainly in 1–4 Hz, showing strong connections within the frontal cortex and weak connections in the anterior–posterior pathways. The EC involving the precuneus/posterior cingulate cortex (PC/PCC) significantly decreased in low-frequency bands. In addition, the parameters of graph theory were significantly altered in several low- and high-frequency bands. CAE patients display frequency-specific abnormalities in the network pattern even during the inter-ictal period, and the frontal cortex and PC/PCC might play crucial roles in the pathophysiology of CAE. The EC network of CAE patients was over-connective and random during the inter-ictal period. This study is the first to reveal the frequency-specific alteration in the EC network during the inter-ictal period in CAE patients. Multiple-frequency MEG data are useful in investigating the pathophysiology of CAE, which can serve as new biomarkers of this disorder. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Topography Springer Journals

Altered Effective Connectivity Network in Childhood Absence Epilepsy: A Multi-frequency MEG Study

Loading next page...
 
/lp/springer_journal/altered-effective-connectivity-network-in-childhood-absence-epilepsy-a-w3fYo9aCHs
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Psychiatry; Neurology
ISSN
0896-0267
eISSN
1573-6792
D.O.I.
10.1007/s10548-017-0555-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial