Alterations in the Intrinsic Burst Activity of Purkinje Neurons in Offspring Maternally Exposed to the CB1 Cannabinoid Agonist WIN 55212-2

Alterations in the Intrinsic Burst Activity of Purkinje Neurons in Offspring Maternally Exposed... Burst firing plays an important role in normal neuronal function and dysfunction. In Purkinje neurons, where the firing rate and discharge pattern encode the timing signals necessary for motor function, any alteration in firing properties, including burst activity, may affect the motor output. Therefore, we examined whether maternal exposure to the cannabinoid receptor agonist WIN 55212-2 (WIN) may affect the burst firing properties of cerebellar Purkinje cells in offspring. Whole-cell somatic patch-clamp recordings were made from cerebellar slices of adult male rats that were exposed to WIN prenatally. WIN exposure during pregnancy induced long-term alterations in the burst firing behavior of Purkinje neurons in rat offspring as evidenced by a significant increase in the mean number of spikes per burst (p < 0.05) and the prolongation of burst firing activity (p < 0.01). The postburst afterhyperpolarization potential (p < 0.001), the mean intraburst interspike intervals (p < 0.001) and the mean intraburst firing frequency (p < 0.001) were also significantly increased in the WIN-treated group. Prenatal exposure to WIN enhanced the firing irregularity as reflected by a significant decrease in the coefficient of variation of the intraburst interspike interval (p < 0.05). Furthermore, whole-cell voltage-clamp recordings revealed that prenatal WIN exposure significantly enhanced Ca2+ channel current amplitude in offspring Purkinje neurons compared to control cells. Overall, the data presented here strongly suggest that maternal exposure to cannabinoids can induce long-term changes in complex spike burst activity, which in turn may lead to alterations in neuronal output. The Journal of Membrane Biology Springer Journals

Alterations in the Intrinsic Burst Activity of Purkinje Neurons in Offspring Maternally Exposed to the CB1 Cannabinoid Agonist WIN 55212-2

Loading next page...
Springer US
Copyright © 2013 by Springer Science+Business Media New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial