Alterations in soil microbial communities caused by treatments with penicillin or neomycin

Alterations in soil microbial communities caused by treatments with penicillin or neomycin Antibiotic residues in soils can lead to serious health risk and ecological hazards. In this study, the effects of penicillin and neomycin, two antibiotics widely used in animal production, were investigated on soil bacterial communities. Changes in the community structure were monitored using three 16S ribosomal DNA (rDNA) polymerase chain reaction-based approaches, including denaturing gradient gel electrophoresis (DGGE), amplified rDNA restriction analysis (ARDRA), and terminal-restriction fragment length polymorphism (T-RFLP) analysis. The prominent DGGE bands were excised from gels and sequenced, and the data indicated the prevalence of Gammaproteobacteria in the soils. The total soil bacterial community, including uncultured bacteria, exhibited a higher diversity than that of cultured bacteria. Some microbial strains were capable of surviving and even subsisting on penicillin or neomycin. We also observed toxic effects of the antibiotics on the indigenous soil bacterial communities since some genotypes disappeared after the treatments (e.g., Pseudomonas sp., Stenotrophomonas sp., Salinimonas, and uncultured Acinetobacter sp.). The implications of these findings are that the functions of soil bacterial communities may be negatively affected if key microbial community members are lost. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Alterations in soil microbial communities caused by treatments with penicillin or neomycin

Loading next page...
 
/lp/springer_journal/alterations-in-soil-microbial-communities-caused-by-treatments-with-ME4BdRX1HE
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9530-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial