Alteration of Ion Channels in the Plasmalemma of Nitella flexilisCells during Long-Term Hyperthermia

Alteration of Ion Channels in the Plasmalemma of Nitella flexilisCells during Long-Term Hyperthermia The conventional microelectrode technique was applied to study changes in conductance and activation characteristics of potassium and chloride channels in the plasmalemma of characean alga Nitella flexilis(L.) Agardz. during long-term heat treatment. Measurements were conducted at 18–20°C after preliminary exposure of cells to 33°C for 1–25 days. The conductance of outward- and inward-rectifying potassium channels, as well as the currents of excitable chloride channels, decreased after 2–3 days of heat treatment. By the 15th–17th days, the conductance of potassium channels was reduced by a factor of 3–5, whereas the peak values of the chloride current, associated with the action potential, was reduced by a factor of 8–10. These heat-induced changes were long lasting: the restoration of the initial parameters of transport systems after transferring cells to chilling or room temperature occurred within several days. Moreover, the recovery at chilling temperatures (8–10°C) proceeded nearly two times longer than at room temperature. Prolonged hyperthermia accelerated activation and deactivation of outward-rectifying potassium channels and caused the shift of their activation curve towards positive potentials by 35–40 mV. Analysis of current–voltage relations showed that the inward current in inward- and outward-rectifying potassium channels was reduced to a greater extent than the outward current. At the same time, both inward and outward currents of chloride channels were reduced to an equal extent. It is assumed that the changes observed are involved in thermal adaptation and account for the decrease in the intracellular concentrations of potassium and other cations and anions, which represents a nonspecific response of plant cells to stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Alteration of Ion Channels in the Plasmalemma of Nitella flexilisCells during Long-Term Hyperthermia

Loading next page...
 
/lp/springer_journal/alteration-of-ion-channels-in-the-plasmalemma-of-nitella-flexiliscells-7TzvWVjL6p
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1016649929910
Publisher site
See Article on Publisher Site

Abstract

The conventional microelectrode technique was applied to study changes in conductance and activation characteristics of potassium and chloride channels in the plasmalemma of characean alga Nitella flexilis(L.) Agardz. during long-term heat treatment. Measurements were conducted at 18–20°C after preliminary exposure of cells to 33°C for 1–25 days. The conductance of outward- and inward-rectifying potassium channels, as well as the currents of excitable chloride channels, decreased after 2–3 days of heat treatment. By the 15th–17th days, the conductance of potassium channels was reduced by a factor of 3–5, whereas the peak values of the chloride current, associated with the action potential, was reduced by a factor of 8–10. These heat-induced changes were long lasting: the restoration of the initial parameters of transport systems after transferring cells to chilling or room temperature occurred within several days. Moreover, the recovery at chilling temperatures (8–10°C) proceeded nearly two times longer than at room temperature. Prolonged hyperthermia accelerated activation and deactivation of outward-rectifying potassium channels and caused the shift of their activation curve towards positive potentials by 35–40 mV. Analysis of current–voltage relations showed that the inward current in inward- and outward-rectifying potassium channels was reduced to a greater extent than the outward current. At the same time, both inward and outward currents of chloride channels were reduced to an equal extent. It is assumed that the changes observed are involved in thermal adaptation and account for the decrease in the intracellular concentrations of potassium and other cations and anions, which represents a nonspecific response of plant cells to stress.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off