Allozyme Variation of the Pygmy Wood Mouse Sylvaemus uralensis (Rodentia, Muridae) and Estimation of the Divergence of Its Chromosome Forms

Allozyme Variation of the Pygmy Wood Mouse Sylvaemus uralensis (Rodentia, Muridae) and Estimation... The genetic divergence between the eastern European, southern European, and Asian chromosome forms of the pygmy wood mouse Sylvaemus uralensis, whose karyotypes differ from one another in the amount of centromeric heterochromatin, has been reevaluated using allozyme analysis. In general, Asian chromosome forms in S. uralensis living in eastern Kazakhstan, eastern Turkmenistan (the Kugitang Ridge), and Uzbekistan are more monomorphic than European populations of this species. However, the allozyme differences between all chromosome forms of the pygmy wood mouse are comparable with the interpopulation differences within each form and are an order of magnitude smaller than those between “good” species of the genus Sylvaemus. Thus, the chromosome forms of S. uralensis cannot be considered to be separate species. The concept of races as large population groups that have not diverged enough to regard them as species but differ from one another in some genetic characters is used to describe the differentiation of S. uralensis forms more adequately. The currently available evidence suggests the existence of two S. uralensis races, the Asian and the European ones, and two chromosome forms (eastern and southern) of the European race. The possible historical factors that have determined the formation of the races of the pygmy wood mouse are considered. According to the most plausible hypothesis, the shift and fragmentation of the broad-leaved forest zone during the most recent glacial period (late Pleistocene) were the crucial factors of the formation of these races, because they resulted in a prolonged isolation of the European and Asian population groups ofS. uralensis from each other. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Allozyme Variation of the Pygmy Wood Mouse Sylvaemus uralensis (Rodentia, Muridae) and Estimation of the Divergence of Its Chromosome Forms

Loading next page...
 
/lp/springer_journal/allozyme-variation-of-the-pygmy-wood-mouse-sylvaemus-uralensis-9mAHCA7bB0
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000039724.84584.2c
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial