All-optical cross-connect using feed-forward optical buffers with and without QoS: an analysis

All-optical cross-connect using feed-forward optical buffers with and without QoS: an analysis An analytical model is derived to evaluate the performance of an optical switch using a feed-forward fiber delay line (FDL) per output for contention resolution. Two different forwarding algorithms for the switch are presented and evaluated: a simple forwarding algorithm (SFA) that is easier to implement, and an enhanced algorithm that provides better performance in terms of both packet loss probability and packet delay. The analytical model can be utilized with both packet and burst switching schemes to characterize the performance of the proposed architecture. Results show that the proposed architecture reduces the packet loss probability compared to that without FDLs. Finally, the same architecture is shown to be capable of supporting Quality of Service (QOS). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

All-optical cross-connect using feed-forward optical buffers with and without QoS: an analysis

Loading next page...
 
/lp/springer_journal/all-optical-cross-connect-using-feed-forward-optical-buffers-with-and-QD7obHjacc
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0129-y
Publisher site
See Article on Publisher Site

Abstract

An analytical model is derived to evaluate the performance of an optical switch using a feed-forward fiber delay line (FDL) per output for contention resolution. Two different forwarding algorithms for the switch are presented and evaluated: a simple forwarding algorithm (SFA) that is easier to implement, and an enhanced algorithm that provides better performance in terms of both packet loss probability and packet delay. The analytical model can be utilized with both packet and burst switching schemes to characterize the performance of the proposed architecture. Results show that the proposed architecture reduces the packet loss probability compared to that without FDLs. Finally, the same architecture is shown to be capable of supporting Quality of Service (QOS).

Journal

Photonic Network CommunicationsSpringer Journals

Published: Apr 17, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off