All-dielectric polarization-independent optical angular filter

All-dielectric polarization-independent optical angular filter We report on an all-dielectric, polarization-independent angular filter with one-dimension (1D) photonic crystal (PC) composed of semiconductor compatible Si/SiO2 pairs. The near-symmetric directional band gap of p- and s-polarized components and Fabry-Pérot (F-P) resonances are utilized to realize efficient polarization-independent angular filtering for normal incidence. The proposed angular filter is designed and experimentally demonstrated in a large area (5 cm × 5 cm) with multilayer sputtering depositions. Experimental measurements show that a divergence angle of the polarization-independently transmitted beam through the angular filtering sample at 1550 nm is 2.2° only and the transmission is as high as 0.8 at normal incidence. The proposed and demonstrated angular filter suggests an effective way to design and implement semiconductor compatible, all-dielectric and polarization-independent angular filters in a fashion of simple structure and easy-fabrication, which is expected to have great applications in lighting, beam manipulation, optical coupling and optical communications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

All-dielectric polarization-independent optical angular filter

Loading next page...
 
/lp/springer_journal/all-dielectric-polarization-independent-optical-angular-filter-IyIYpvbPAq
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16837-w
Publisher site
See Article on Publisher Site

Abstract

We report on an all-dielectric, polarization-independent angular filter with one-dimension (1D) photonic crystal (PC) composed of semiconductor compatible Si/SiO2 pairs. The near-symmetric directional band gap of p- and s-polarized components and Fabry-Pérot (F-P) resonances are utilized to realize efficient polarization-independent angular filtering for normal incidence. The proposed angular filter is designed and experimentally demonstrated in a large area (5 cm × 5 cm) with multilayer sputtering depositions. Experimental measurements show that a divergence angle of the polarization-independently transmitted beam through the angular filtering sample at 1550 nm is 2.2° only and the transmission is as high as 0.8 at normal incidence. The proposed and demonstrated angular filter suggests an effective way to design and implement semiconductor compatible, all-dielectric and polarization-independent angular filters in a fashion of simple structure and easy-fabrication, which is expected to have great applications in lighting, beam manipulation, optical coupling and optical communications.

Journal

Scientific ReportsSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off