Alkaline Phosphatase Activity of Staphylococcus aureus Grown in Biofilm and Suspension Cultures

Alkaline Phosphatase Activity of Staphylococcus aureus Grown in Biofilm and Suspension Cultures Staphylococcus aureus is known for its resistance to antibiotic treatment as well as the ability to form biofilms. Biofilm formation has been seen in S. aureus infections, yet, the mechanism of biofilm formation is not completely understood. Many molecules, such as DNA and polysaccharides, have been identified in the biofilm microenvironment, but little is known about the enzymes involved in the process. In this paper, alkaline phosphatase (ALP) activity was investigated in S. aureus grown either in biofilm or suspension cultures, achieved using DNase I. A significant increase of ALP activity was observed in S. aureus biofilm culture compared to its suspension counterpart. Treatment of sodium orthovanadate, an ALP inhibitor, significantly decreased biofilm formation. Its inhibition was on par with DNase I treatment at specific doses. Thus, ALP may play an important role in the biofilm formation. Likewise, ALP inhibition may be a novel target for anti-biofilm therapeutics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Microbiology Springer Journals

Alkaline Phosphatase Activity of Staphylococcus aureus Grown in Biofilm and Suspension Cultures

Loading next page...
 
/lp/springer_journal/alkaline-phosphatase-activity-of-staphylococcus-aureus-grown-in-NjG2Vwx6tn
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Life Sciences; Microbiology; Biotechnology
ISSN
0343-8651
eISSN
1432-0991
D.O.I.
10.1007/s00284-018-1514-0
Publisher site
See Article on Publisher Site

Abstract

Staphylococcus aureus is known for its resistance to antibiotic treatment as well as the ability to form biofilms. Biofilm formation has been seen in S. aureus infections, yet, the mechanism of biofilm formation is not completely understood. Many molecules, such as DNA and polysaccharides, have been identified in the biofilm microenvironment, but little is known about the enzymes involved in the process. In this paper, alkaline phosphatase (ALP) activity was investigated in S. aureus grown either in biofilm or suspension cultures, achieved using DNase I. A significant increase of ALP activity was observed in S. aureus biofilm culture compared to its suspension counterpart. Treatment of sodium orthovanadate, an ALP inhibitor, significantly decreased biofilm formation. Its inhibition was on par with DNase I treatment at specific doses. Thus, ALP may play an important role in the biofilm formation. Likewise, ALP inhibition may be a novel target for anti-biofilm therapeutics.

Journal

Current MicrobiologySpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off