Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots

Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans:... Alfalfa (Medicago sativa) varieties with antibiosis-based resistance to the root-lesion nematode (Pratylenchus penetrans), a migratory endoparasite of many crops, have been developed by recurrent selection. Individual plants from these varieties that support significantly lower nematode reproduction were identified for molecular and biochemical characterization of defense responses. Before nematode infection, RNA blot analysis revealed 1.3–1.8-fold higher phenylpropanoid pathway mRNA levels in roots of three resistant plants as compared to three susceptible alfalfa plants. The mRNAs encoded the first enzyme in the pathway (phenylalanine ammonia-lyase), the first in the pathway branch for flavonoid biosynthesis (chalcone synthase), a key enzyme in medicarpin biosynthesis (isoflavone reductase) and a key enzyme in the pathway branch for biosynthesis of lignin cell wall precursors (caffeic acid O-methyltransferase). After nematode infection, the mRNAs declined over 48 h in resistant roots but rose in susceptible plants during the first 12 h after-infection and then declined. Acidic β-1,3-glucanase mRNA levels were initially similar in both root types but accumulated more rapidly in resistant than in susceptible roots after nematode infection. Levels of a class I chitinase mRNA were similar in both root types. Histone H3.2 mRNA levels, initially 1.3-fold higher in resistant roots, declined over 6–12 h to levels found in susceptible roots and remained stable in both root types thereafter. Defense-response gene transcripts in roots of nematode-resistant and susceptible alfalfa plants thus differed both constitutively and in inductive responses to nematode infection. HPLC analysis of isoflavonoid-derived metabolites of the phenylpropanoid pathway revealed similar total constitutive levels, but varying relative proportions and types, in roots of the resistant and susceptible plants. Nematode infection had no effect on isoflavonoid levels. Constitutive levels of the phytoalexin medicarpin were highest in roots of the two most resistant plants. Medicarpin inhibited motility of P. penetrans in vitro. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots

Loading next page...
 
/lp/springer_journal/alfalfa-medicago-sativa-l-resistance-to-the-root-lesion-nematode-f1F0KWV72d
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006182908528
Publisher site
See Article on Publisher Site

Abstract

Alfalfa (Medicago sativa) varieties with antibiosis-based resistance to the root-lesion nematode (Pratylenchus penetrans), a migratory endoparasite of many crops, have been developed by recurrent selection. Individual plants from these varieties that support significantly lower nematode reproduction were identified for molecular and biochemical characterization of defense responses. Before nematode infection, RNA blot analysis revealed 1.3–1.8-fold higher phenylpropanoid pathway mRNA levels in roots of three resistant plants as compared to three susceptible alfalfa plants. The mRNAs encoded the first enzyme in the pathway (phenylalanine ammonia-lyase), the first in the pathway branch for flavonoid biosynthesis (chalcone synthase), a key enzyme in medicarpin biosynthesis (isoflavone reductase) and a key enzyme in the pathway branch for biosynthesis of lignin cell wall precursors (caffeic acid O-methyltransferase). After nematode infection, the mRNAs declined over 48 h in resistant roots but rose in susceptible plants during the first 12 h after-infection and then declined. Acidic β-1,3-glucanase mRNA levels were initially similar in both root types but accumulated more rapidly in resistant than in susceptible roots after nematode infection. Levels of a class I chitinase mRNA were similar in both root types. Histone H3.2 mRNA levels, initially 1.3-fold higher in resistant roots, declined over 6–12 h to levels found in susceptible roots and remained stable in both root types thereafter. Defense-response gene transcripts in roots of nematode-resistant and susceptible alfalfa plants thus differed both constitutively and in inductive responses to nematode infection. HPLC analysis of isoflavonoid-derived metabolites of the phenylpropanoid pathway revealed similar total constitutive levels, but varying relative proportions and types, in roots of the resistant and susceptible plants. Nematode infection had no effect on isoflavonoid levels. Constitutive levels of the phytoalexin medicarpin were highest in roots of the two most resistant plants. Medicarpin inhibited motility of P. penetrans in vitro.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off