Airborne Hyperspectral Imagery and Yield Monitor Data for Mapping Cotton Yield Variability

Airborne Hyperspectral Imagery and Yield Monitor Data for Mapping Cotton Yield Variability Increased availability of hyperspectral imagery necessitates the evaluation of its potential for precision agriculture applications. This study examined airborne hyperspectral imagery for mapping cotton (Gossypium hirsutum L.) yield variability as compared with yield monitor data. Hyperspectral images were acquired using an airborne imaging system from two cotton fields during the 2001 growing season, and yield data were collected from the fields using a cotton yield monitor. The raw hyperspectral images contained 128 bands between 457 and 922 nm. The raw images were geometrically corrected, georeferenced and resampled to 1 m resolution, and then converted to reflectance. Aggregation functions were then applied to each of the 128 bands to reduce the cell resolution to 4 m (close to the cotton picker's cutting width) and 8 m. The yield data were also aggregated to the two grids. Correlation analysis showed that cotton yield was significantly related to the image data for all the bands except for a few bands in the transitional range from the red to the near-infrared region. Stepwise regression performed on the yield and hyperspectral data identified significant bands and band combinations for estimating yield variability for the two fields. Narrow band normalized difference vegetation indices derived from the significant bands provided better yield estimation than most of the individual bands. The stepwise regression models based on the significant narrow bands explained 61% and 69% of the variability in yield for the two fields, respectively. To demonstrate if narrow bands may be better for yield estimation than broad bands, the hyperspectral bands were aggregated into Landsat-7 ETM+ sensor's bandwidths. The stepwise regression models based on the four broad bands explained only 42% and 58% of the yield variability for the two fields, respectively. These results indicate that hyperspectral imagery may be a useful data source for mapping crop yield variability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Airborne Hyperspectral Imagery and Yield Monitor Data for Mapping Cotton Yield Variability

Loading next page...
 
/lp/springer_journal/airborne-hyperspectral-imagery-and-yield-monitor-data-for-mapping-0lbJz0dtlG
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-004-5319-8
Publisher site
See Article on Publisher Site

Abstract

Increased availability of hyperspectral imagery necessitates the evaluation of its potential for precision agriculture applications. This study examined airborne hyperspectral imagery for mapping cotton (Gossypium hirsutum L.) yield variability as compared with yield monitor data. Hyperspectral images were acquired using an airborne imaging system from two cotton fields during the 2001 growing season, and yield data were collected from the fields using a cotton yield monitor. The raw hyperspectral images contained 128 bands between 457 and 922 nm. The raw images were geometrically corrected, georeferenced and resampled to 1 m resolution, and then converted to reflectance. Aggregation functions were then applied to each of the 128 bands to reduce the cell resolution to 4 m (close to the cotton picker's cutting width) and 8 m. The yield data were also aggregated to the two grids. Correlation analysis showed that cotton yield was significantly related to the image data for all the bands except for a few bands in the transitional range from the red to the near-infrared region. Stepwise regression performed on the yield and hyperspectral data identified significant bands and band combinations for estimating yield variability for the two fields. Narrow band normalized difference vegetation indices derived from the significant bands provided better yield estimation than most of the individual bands. The stepwise regression models based on the significant narrow bands explained 61% and 69% of the variability in yield for the two fields, respectively. To demonstrate if narrow bands may be better for yield estimation than broad bands, the hyperspectral bands were aggregated into Landsat-7 ETM+ sensor's bandwidths. The stepwise regression models based on the four broad bands explained only 42% and 58% of the yield variability for the two fields, respectively. These results indicate that hyperspectral imagery may be a useful data source for mapping crop yield variability.

Journal

Precision AgricultureSpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial