Airborne hyperspectral imagery and linear spectral unmixing for mapping variation in crop yield

Airborne hyperspectral imagery and linear spectral unmixing for mapping variation in crop yield Spectral unmixing techniques can be used to quantify crop canopy cover within each pixel of an image and have the potential for mapping the variation in crop yield. This study applied linear spectral unmixing to airborne hyperspectral imagery to estimate the variation in grain sorghum yield. Airborne hyperspectral imagery and yield monitor data recorded from two sorghum fields were used for this study. Both unconstrained and constrained linear spectral unmixing models were applied to the hyperspectral imagery with sorghum plants and bare soil as two endmembers. A pair of plant and soil spectra derived from each image and another pair of ground-measured plant and soil spectra were used as endmember spectra to generate unconstrained and constrained soil and plant cover fractions. Yield was positively related to the plant fraction and negatively related to the soil fraction. The effects of variation in endmember spectra on estimates of cover fractions and their correlations with yield were also examined. The unconstrained plant fraction had essentially the same correlations (r) with yield among all pairs of endmember spectra examined, whereas the unconstrained soil fraction and constrained plant and soil fractions had r-values that were sensitive to the spectra used. For comparison, all 5151 possible narrow-band normalized difference vegetation indices (NDVIs) were calculated from the 102-band images and related to yield. Results showed that the best plant and soil fractions provided better correlations than 96.3 and 99.9% of all the NDVIs for fields 1 and 2, respectively. Since the unconstrained plant fraction could represent yield variation better than most narrow-band NDVIs, it can be used as a relative yield map especially when yield data are not available. These results indicate that spectral unmixing applied to hyperspectral imagery can be a useful tool for mapping the variation in crop yield. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Airborne hyperspectral imagery and linear spectral unmixing for mapping variation in crop yield

Loading next page...
 
/lp/springer_journal/airborne-hyperspectral-imagery-and-linear-spectral-unmixing-for-2TnKBaJZDi
Publisher
Springer US
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-007-9045-x
Publisher site
See Article on Publisher Site

Abstract

Spectral unmixing techniques can be used to quantify crop canopy cover within each pixel of an image and have the potential for mapping the variation in crop yield. This study applied linear spectral unmixing to airborne hyperspectral imagery to estimate the variation in grain sorghum yield. Airborne hyperspectral imagery and yield monitor data recorded from two sorghum fields were used for this study. Both unconstrained and constrained linear spectral unmixing models were applied to the hyperspectral imagery with sorghum plants and bare soil as two endmembers. A pair of plant and soil spectra derived from each image and another pair of ground-measured plant and soil spectra were used as endmember spectra to generate unconstrained and constrained soil and plant cover fractions. Yield was positively related to the plant fraction and negatively related to the soil fraction. The effects of variation in endmember spectra on estimates of cover fractions and their correlations with yield were also examined. The unconstrained plant fraction had essentially the same correlations (r) with yield among all pairs of endmember spectra examined, whereas the unconstrained soil fraction and constrained plant and soil fractions had r-values that were sensitive to the spectra used. For comparison, all 5151 possible narrow-band normalized difference vegetation indices (NDVIs) were calculated from the 102-band images and related to yield. Results showed that the best plant and soil fractions provided better correlations than 96.3 and 99.9% of all the NDVIs for fields 1 and 2, respectively. Since the unconstrained plant fraction could represent yield variation better than most narrow-band NDVIs, it can be used as a relative yield map especially when yield data are not available. These results indicate that spectral unmixing applied to hyperspectral imagery can be a useful tool for mapping the variation in crop yield.

Journal

Precision AgricultureSpringer Journals

Published: Nov 21, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off