Agronomic evaluation and molecular characterisation of the acetolactate synthase gene in imazapyr tolerant sugarcane (Saccharum hybrid) genotypes

Agronomic evaluation and molecular characterisation of the acetolactate synthase gene in imazapyr... Key message Mutagenesis had no effect on number of stalks/plot, stalk height, fibre and sucrose content of mutants. Imazapyr tolerance is likely due to a S622N mutation in the acetolactate synthase gene. Abstract The herbicidal compound imazapyr is effective against weeds such as Cynodon and Rottboellia species that con- strain sugarcane production. This study aimed to compare agronomic characteristics of three imazapyr tolerant mutants (Mut 1, Mut 6 and Mut 7) with the non-mutated N12 control after 18 months of growth, and to sequence the acetolactate synthase (ALS) gene to identify any point mutations conferring imazapyr tolerance. There were no significant differences in the number of stalks/plot, stalk height, fibre and sucrose contents of the mutants compared with the N12 control. However, Mut 1 genotype was more susceptible to the Lepidopteran stalk borer, Eldana saccharina when compared with the non- mutated N12 (11.14 ± 1.37 and 3.89 ± 0.52% internodes bored, respectively), making Mut 1 less desirable for commercial cultivation. Molecular characterisation of the ALS gene revealed non-synonymous mutations in Mut 6. An A to G change at nucleotide position 1857 resulted in a N513D mutation, while a G to A change at nucleotide position 2184 imposed a S622N http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell Reports Springer Journals

Agronomic evaluation and molecular characterisation of the acetolactate synthase gene in imazapyr tolerant sugarcane (Saccharum hybrid) genotypes

Loading next page...
 
/lp/springer_journal/agronomic-evaluation-and-molecular-characterisation-of-the-gjvfKoMh3L
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Plant Sciences; Cell Biology; Biotechnology; Plant Biochemistry
ISSN
0721-7714
eISSN
1432-203X
D.O.I.
10.1007/s00299-018-2306-5
Publisher site
See Article on Publisher Site

Abstract

Key message Mutagenesis had no effect on number of stalks/plot, stalk height, fibre and sucrose content of mutants. Imazapyr tolerance is likely due to a S622N mutation in the acetolactate synthase gene. Abstract The herbicidal compound imazapyr is effective against weeds such as Cynodon and Rottboellia species that con- strain sugarcane production. This study aimed to compare agronomic characteristics of three imazapyr tolerant mutants (Mut 1, Mut 6 and Mut 7) with the non-mutated N12 control after 18 months of growth, and to sequence the acetolactate synthase (ALS) gene to identify any point mutations conferring imazapyr tolerance. There were no significant differences in the number of stalks/plot, stalk height, fibre and sucrose contents of the mutants compared with the N12 control. However, Mut 1 genotype was more susceptible to the Lepidopteran stalk borer, Eldana saccharina when compared with the non- mutated N12 (11.14 ± 1.37 and 3.89 ± 0.52% internodes bored, respectively), making Mut 1 less desirable for commercial cultivation. Molecular characterisation of the ALS gene revealed non-synonymous mutations in Mut 6. An A to G change at nucleotide position 1857 resulted in a N513D mutation, while a G to A change at nucleotide position 2184 imposed a S622N

Journal

Plant Cell ReportsSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off