Agrobacterial rol genes modify thermodynamic and structural properties of starch in microtubers of transgenic potato

Agrobacterial rol genes modify thermodynamic and structural properties of starch in microtubers... Wild-type (WT) plants of potato (Solanum tuberosum L.) and their transgenic forms carrying agrobacterial genes rolB or rolC under the control of B33 class I patatin promoter were cultured in vitro on MS medium with 2% sucrose in a controlled-climate chamber at 16-h illumination and 22°C. These plants were used as a source of single-node stem cuttings, which were cultured in darkness on the same medium supplemented with 8% sucrose. The tubers formed on them were used for determination of the structure of native starch using the methods of differential scanning microcalorimetry (DSC), X-ray scattering, and scanning electron microscopy. It was found that, in starch from the tubers of rolB-plants, the temperature of crystalline lamella melting was lower and their thickness was less than in WT potato. In tubers of rolC plants, starch differed from starch in WT plants by a higher melting temperature, considerably reduced melting enthalpy, and a greater thickness of crystalline lamellae. Deconvolution of DSC thermogram makes it possible to interpret the melting of starch from the tubers of rolC plants as the melting of two independent crystalline structures with melting temperatures of 65.0 and 69.8°C. Electron microscopic examination confirmed the earlier obtained data indicating that, in the tubers of rolC plants, starch granules are smaller and in the tubers of rolB plants larger than in WT plants. Possible ways of influence of rol transgenes on structural properties of starch in amyloplasts of potato tubers are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Agrobacterial rol genes modify thermodynamic and structural properties of starch in microtubers of transgenic potato

Loading next page...
 
/lp/springer_journal/agrobacterial-rol-genes-modify-thermodynamic-and-structural-properties-7wofP7KZHa
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710050080
Publisher site
See Article on Publisher Site

Abstract

Wild-type (WT) plants of potato (Solanum tuberosum L.) and their transgenic forms carrying agrobacterial genes rolB or rolC under the control of B33 class I patatin promoter were cultured in vitro on MS medium with 2% sucrose in a controlled-climate chamber at 16-h illumination and 22°C. These plants were used as a source of single-node stem cuttings, which were cultured in darkness on the same medium supplemented with 8% sucrose. The tubers formed on them were used for determination of the structure of native starch using the methods of differential scanning microcalorimetry (DSC), X-ray scattering, and scanning electron microscopy. It was found that, in starch from the tubers of rolB-plants, the temperature of crystalline lamella melting was lower and their thickness was less than in WT potato. In tubers of rolC plants, starch differed from starch in WT plants by a higher melting temperature, considerably reduced melting enthalpy, and a greater thickness of crystalline lamellae. Deconvolution of DSC thermogram makes it possible to interpret the melting of starch from the tubers of rolC plants as the melting of two independent crystalline structures with melting temperatures of 65.0 and 69.8°C. Electron microscopic examination confirmed the earlier obtained data indicating that, in the tubers of rolC plants, starch granules are smaller and in the tubers of rolB plants larger than in WT plants. Possible ways of influence of rol transgenes on structural properties of starch in amyloplasts of potato tubers are discussed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 2, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off