Agricultural robots—system analysis and economic feasibility

Agricultural robots—system analysis and economic feasibility This paper focuses on the economic feasibility of applying autonomous robotic vehicles compared to conventional systems in three different applications: robotic weeding in high value crops (particularly sugar beet), crop scouting in cereals and grass cutting on golf courses. The comparison was based on a systems analysis and an individual economic feasibility study for each of the three applications. The results showed that in all three scenarios, the robotic applications are more economically feasible than the conventional systems. The high cost of real time kinematics Global Positioning System (RTK-GPS) and the small capacity of the vehicles are the main parameters that increase the cost of the robotic systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Agricultural robots—system analysis and economic feasibility

Loading next page...
 
/lp/springer_journal/agricultural-robots-system-analysis-and-economic-feasibility-7zlfpBegOx
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-006-9014-9
Publisher site
See Article on Publisher Site

Abstract

This paper focuses on the economic feasibility of applying autonomous robotic vehicles compared to conventional systems in three different applications: robotic weeding in high value crops (particularly sugar beet), crop scouting in cereals and grass cutting on golf courses. The comparison was based on a systems analysis and an individual economic feasibility study for each of the three applications. The results showed that in all three scenarios, the robotic applications are more economically feasible than the conventional systems. The high cost of real time kinematics Global Positioning System (RTK-GPS) and the small capacity of the vehicles are the main parameters that increase the cost of the robotic systems.

Journal

Precision AgricultureSpringer Journals

Published: Jul 27, 2006

References

  • An agricultural mobile robot with vision-based perception for mechanical weed control
    Astrand, B; Baerveldt, AJ
  • Automatic guidance of agricultural mobiles at the NCEA
    Billingsley, J
  • Real-time multi ISFET/FIA soil analysis system with automatic sample extraction
    Birrel, SJ; Hummel, JW

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off