Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects

Agricultural productivity in Latin America and the Caribbean in the presence of unobserved... Total factor productivity (TFP) analysis has been the focus of a large number of methodological and empirical studies over the past several decades. One remarkable gap in this literature is the omission of climatic variables as regressors in the models used to derive TFP measures. The purpose of this paper is to narrow this gap by developing climate-adjusted (CA) TFP measures. We combine information from the Climatic Research Unit with Food and Agriculture Organization data for 28 Latin American and Caribbean countries over a 52-year period (1961–2012) to estimate random parameter stochastic production frontier (SPF) models. The goal is to investigate the impact of climatic variability on TFP. The estimated coefficients from the SPF models are used to construct a climatic effects index across countries and over time. The average annual variation in climatic conditions is stronger at the end of the 2000s compared to earlier periods. Climatic variability has a negative effect on production in 20 of the 28 LAC countries analyzed, and this is more severe over Central America and the Caribbean. The average reduction in output across the region attributable to climatic variables is between 0.02 and 22.7% over the last decade compared to the period 1961–1999. The estimated average annual growth rate of CATFP (0.69%) is consistently lower than TFP (1.08%), confirming the adverse impact of climatic variability on agricultural output and productivity in LAC. The results show considerable variability across countries, and this points to the importance of accounting for climatic effects in analyzing TFP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Climatic Change Springer Journals

Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects

Loading next page...
 
/lp/springer_journal/agricultural-productivity-in-latin-america-and-the-caribbean-in-the-3R2gEtZEvk
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Earth Sciences; Atmospheric Sciences; Climate Change/Climate Change Impacts
ISSN
0165-0009
eISSN
1573-1480
D.O.I.
10.1007/s10584-017-2013-1
Publisher site
See Article on Publisher Site

Abstract

Total factor productivity (TFP) analysis has been the focus of a large number of methodological and empirical studies over the past several decades. One remarkable gap in this literature is the omission of climatic variables as regressors in the models used to derive TFP measures. The purpose of this paper is to narrow this gap by developing climate-adjusted (CA) TFP measures. We combine information from the Climatic Research Unit with Food and Agriculture Organization data for 28 Latin American and Caribbean countries over a 52-year period (1961–2012) to estimate random parameter stochastic production frontier (SPF) models. The goal is to investigate the impact of climatic variability on TFP. The estimated coefficients from the SPF models are used to construct a climatic effects index across countries and over time. The average annual variation in climatic conditions is stronger at the end of the 2000s compared to earlier periods. Climatic variability has a negative effect on production in 20 of the 28 LAC countries analyzed, and this is more severe over Central America and the Caribbean. The average reduction in output across the region attributable to climatic variables is between 0.02 and 22.7% over the last decade compared to the period 1961–1999. The estimated average annual growth rate of CATFP (0.69%) is consistently lower than TFP (1.08%), confirming the adverse impact of climatic variability on agricultural output and productivity in LAC. The results show considerable variability across countries, and this points to the importance of accounting for climatic effects in analyzing TFP.

Journal

Climatic ChangeSpringer Journals

Published: Jul 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off