Agonists that Increase [Ca2+]i Halt the Movement of Acidic Cytoplasmic Vesicles in MDCK Cells

Agonists that Increase [Ca2+]i Halt the Movement of Acidic Cytoplasmic Vesicles in MDCK Cells Translocation of vesicles within the cytoplasm is essential to normal cell function. The vesicles are typically transported along the microtubules to their destination. The aim of this study was to characterize the vesicular movement in resting and stimulated renal epithelial cells. MDCK cells loaded with either quinacrine or acridine orange, dyes taken up by acidic vesicles, were observed at 37°C in semiopen perfusion chambers. Time-lapse series were analyzed by Imaris software. Our data revealed vigorous movement of stained vesicles in resting MDCK cells. These movements seem to require intact microtubules because nocodazole leads to a considerable reduction of the vesicular movements. Interestingly, we found that extracellular ATP caused the vesicular movement to cease. This observation was obvious in time lapse. Similarly, other stimuli known to increase the intracellular Ca2+ concentration ([Ca2+]i) in MDCK cells (increment in the fluid flow rate or arginine vasopressin) also reduced the vesicular movement. These findings were quantified by analysis of single vesicular movement patterns. In this way, ATP was found to reduce the lateral displacement of the total population of vesicles by 40%. Because all these perturbations increase [Ca2+]i, we speculated that this increase in [Ca2+]i was responsible for the vesicle arrest. Therefore, we tested the effect of the Ca2+ ionophore, ionomycin (1 μM), which in the presence of extracellular Ca2+ resulted in a considerable and sustained reduction of vesicular movement amounting to a 58% decrease in average lateral vesicular displacement. Our data suggest that vesicles transported on microtubules are paused when subjected to high intracellular Ca2+ concentrations. This may provide an additional explanation for the cytotoxic effect of high [Ca2+]i. The Journal of Membrane Biology Springer Journals

Agonists that Increase [Ca2+]i Halt the Movement of Acidic Cytoplasmic Vesicles in MDCK Cells

Loading next page...
Copyright © 2011 by Springer Science+Business Media, LLC
Life Sciences; Human Physiology; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial