Age-specific patterns of infection with haemosporidians and trypanosomes in a warbler: implications for sexual selection

Age-specific patterns of infection with haemosporidians and trypanosomes in a warbler:... Although the selective loss of individuals susceptible to disease can favor the evolution of female preference for older males, the interrelationship between age, infection, longevity, and mating success remains poorly characterized in natural populations. In a longitudinal study of 61 male common yellowthroats (Geothlypis trichas), we found that the probability of infection with hematozoa increased as males aged from 1 to 5 years. Despite a significant, negative association between infection and longevity that partially masked age-effects, the odds that a male was infected with Trypanosoma, Plasmodium, or Leucocytozoon increased 71–212% per year. Nearly 75% of males in their first breeding season were either uninfected or infected with only a single parasite, while 50% of older males were infected with at least two parasites and 16% were infected with all three. No males escaped infection after their second breeding season. Older males were also more likely to sire extra-pair young (EPY) and, as a consequence, infection with multiple parasites was associated with a fourfold increase in the odds of producing EPY. Unlike younger males, 80% of the oldest males had a history of either surviving chronic infection or recovering. Combined with previous work showing higher diversity at the major histocompatibility complex among older males, our results suggest that the song and plumage traits that signal male age in common yellowthroats also, perforce, signal resistance to parasites. By preferring older males, females may obtain good genes for disease resistance even in the absence of any effect of infection on male ornamentation. Oecologia Springer Journals

Age-specific patterns of infection with haemosporidians and trypanosomes in a warbler: implications for sexual selection

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany
Life Sciences; Ecology; Plant Sciences; Hydrology/Water Resources
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial