Age-related changes in nitroxidergic neurons in some nuclei of rat medulla oblongata

Age-related changes in nitroxidergic neurons in some nuclei of rat medulla oblongata The paper presents a comparative study of NO neurons in the solitary tract nucleus, giant-cell, and lateral reticular nuclei in rats at 4, 7, 10, 14, 30, 45, and 60 days old and 3, 6, 12, 18, 24 months old. We determine the active quantitative and qualitative changes that occur in NO-positive neurons in the studied nuclei during the course of postnatal development. A low level of enzyme activity is observed on the first day; it reaches a peak level around the first-third month, then slowly declines. The size and number of nitroxidergic neurons increases, while the relative cell density decreases until the third month of life. We reveal local differences in the ontogenetic development of NO neurons in the studied nuclei. Solitary tract neurons have the highest rate of development, while NO neurons of old animals undergo early and extreme changes as compared to other studied nuclei of rat medulla oblongata. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Age-related changes in nitroxidergic neurons in some nuclei of rat medulla oblongata

Loading next page...
 
/lp/springer_journal/age-related-changes-in-nitroxidergic-neurons-in-some-nuclei-of-rat-CNZgrFV3LY
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360410040053
Publisher site
See Article on Publisher Site

Abstract

The paper presents a comparative study of NO neurons in the solitary tract nucleus, giant-cell, and lateral reticular nuclei in rats at 4, 7, 10, 14, 30, 45, and 60 days old and 3, 6, 12, 18, 24 months old. We determine the active quantitative and qualitative changes that occur in NO-positive neurons in the studied nuclei during the course of postnatal development. A low level of enzyme activity is observed on the first day; it reaches a peak level around the first-third month, then slowly declines. The size and number of nitroxidergic neurons increases, while the relative cell density decreases until the third month of life. We reveal local differences in the ontogenetic development of NO neurons in the studied nuclei. Solitary tract neurons have the highest rate of development, while NO neurons of old animals undergo early and extreme changes as compared to other studied nuclei of rat medulla oblongata.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Aug 4, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial