Ag3PO4/Bi2MoO6 heterostructures with enhanced visible light photocatalytic activity for the degradation of rhodamine B

Ag3PO4/Bi2MoO6 heterostructures with enhanced visible light photocatalytic activity for the... Highly efficient visible-light-driven Ag3PO4/Bi2MoO6 hybrid photocatalysts with different mole ratios of Ag3PO4 were prepared via sonochemical method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that product are cubic Ag3PO4 nanoparticles supported on orthorhombic Bi2MoO6 nanoplates. Under visible light irradiation (>420 nm), the Ag3PO4/Bi2MoO6 photocatalysts displayed the higher photocatalytic activity than pure Bi2MoO6 for the decolorization of rhodamine B (RhB). Among the hybrid photocatalysts, 10% Ag3PO4/Bi2MoO6 exhibited the highest photocatalytic activity for the decolorization of RhB due to the efficient separation of electron–hole pairs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Ag3PO4/Bi2MoO6 heterostructures with enhanced visible light photocatalytic activity for the degradation of rhodamine B

Loading next page...
 
/lp/springer_journal/ag3po4-bi2moo6-heterostructures-with-enhanced-visible-light-G1lTvIyLhY
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216050232
Publisher site
See Article on Publisher Site

Abstract

Highly efficient visible-light-driven Ag3PO4/Bi2MoO6 hybrid photocatalysts with different mole ratios of Ag3PO4 were prepared via sonochemical method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that product are cubic Ag3PO4 nanoparticles supported on orthorhombic Bi2MoO6 nanoplates. Under visible light irradiation (>420 nm), the Ag3PO4/Bi2MoO6 photocatalysts displayed the higher photocatalytic activity than pure Bi2MoO6 for the decolorization of rhodamine B (RhB). Among the hybrid photocatalysts, 10% Ag3PO4/Bi2MoO6 exhibited the highest photocatalytic activity for the decolorization of RhB due to the efficient separation of electron–hole pairs.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Aug 12, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off