Aerodynamic and functional consequences of wing compliance

Aerodynamic and functional consequences of wing compliance A growing body of evidence indicates that a majority of insects experience some degree of wing deformation during flight. With no musculature distal to the wing base, the instantaneous shape of an insect wing is dictated by the interaction of aerodynamic forces with the inertial and elastic forces that arise from periodic accelerations of the wing. Passive wing deformation is an unavoidable feature of flapping flight for many insects due to the inertial loads that accompany rapid stroke reversals—loads that well exceed the mean aerodynamic force. Although wing compliance has been implicated in a few lift-enhancing mechanisms (e.g., favorable camber), the direct aerodynamic consequences of wing deformation remain generally unresolved. In this paper, we present new experimental data on how wing compliance may affect the overall induced flow in the hawkmoth, Manduca sexta. Real moth wings were subjected to robotic actuation in their dominant plane of rotation at a natural wing beat frequency of 25 Hz. We used digital particle image velocimetry at exceptionally high temporal resolution (2,100 fps) to assess the influence of wing compliance on the mean advective flows, relying on a natural variation in wing stiffness to alter the amount of emergent deformation (freshly extracted wings are flexible and exhibit greater compliance than those that are desiccated). We find that flexible wings yield mean advective flows with substantially greater magnitudes and orientations more beneficial to lift than those of stiff wings. Our results confirm that wing compliance plays a critical role in the production of flight forces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Aerodynamic and functional consequences of wing compliance

Loading next page...
 
/lp/springer_journal/aerodynamic-and-functional-consequences-of-wing-compliance-22whoDffi2
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0607-0
Publisher site
See Article on Publisher Site

Abstract

A growing body of evidence indicates that a majority of insects experience some degree of wing deformation during flight. With no musculature distal to the wing base, the instantaneous shape of an insect wing is dictated by the interaction of aerodynamic forces with the inertial and elastic forces that arise from periodic accelerations of the wing. Passive wing deformation is an unavoidable feature of flapping flight for many insects due to the inertial loads that accompany rapid stroke reversals—loads that well exceed the mean aerodynamic force. Although wing compliance has been implicated in a few lift-enhancing mechanisms (e.g., favorable camber), the direct aerodynamic consequences of wing deformation remain generally unresolved. In this paper, we present new experimental data on how wing compliance may affect the overall induced flow in the hawkmoth, Manduca sexta. Real moth wings were subjected to robotic actuation in their dominant plane of rotation at a natural wing beat frequency of 25 Hz. We used digital particle image velocimetry at exceptionally high temporal resolution (2,100 fps) to assess the influence of wing compliance on the mean advective flows, relying on a natural variation in wing stiffness to alter the amount of emergent deformation (freshly extracted wings are flexible and exhibit greater compliance than those that are desiccated). We find that flexible wings yield mean advective flows with substantially greater magnitudes and orientations more beneficial to lift than those of stiff wings. Our results confirm that wing compliance plays a critical role in the production of flight forces.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 7, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off